INVERSE FUNCTIONS:

EXPONENTIAL,
LOGARITHMIC,AND
INVERSE TRIGONOMETRIC
FUNCTIONS

The exponential and
logarithmic functions are

inverse functions of each other.

The common theme that links the functions of this chapter is that they occur as pairs of
inverse functions. In particular, two of the most important functions that occur in

mathematics and its applications are the exponential function f(x) = a* and its inverse

function, the logarithmic function g(x) = logax. In this chapter we investigate their
properties, compute their derivatives, and use them to describe exponential growth and
decay in biology, physics, chemistry, and other sciences. We also study the inverses of
trigonometric and hyperbolic functions. Finally, we look at a method (I"'Hospital’s Rule)
for computing difficult limits and apply it to sketching curves.

There are two possible ways of defining the exponential and logarithmic functions
and developing their properties and derivatives. One is to start with the exponential
function (defined as in algebra or precalculus courses) and then define the logarithm a$ .
its inverse. That is the approach taken in Sections 7.2, 7.3, and 7.4 and is probably the
most intuitive method. The other way is to start by defining the logarithm as an integratas
and then define the exponential function as its inverse. This approach is followed in
Sections 7.2%, 7.3%, and 7.4* and, although it is less intuitive, many instructors preferi
because it is more rigorous and the properties follow more easily. You need only read
one of these two approaches (whichever your instructor recommends).

/
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7.1 | INVERSE FUNCTIONS

Table 1 gives data from an experiment in which a bacteria culture started with 100 bacte-
ria in a limited nutrient medium; the size of the bacteria population was recorded at hourly
intervals. The number of bacteria N is a function of the time 7: N = f@).

Suppose, however, that the biologist changes her point of view and becomes interested
in the time required for the population to reach various levels. In other words, she is think-
ing of 7 as a function of N. This function is called the inverse function of f, denoted by !,
and read “finverse.” Thus t = f~!(N) is the time required for the population level to reach
N. The values of f~' can be found by reading Table 1 from right to left or by consulting
Table 2. For instance, f~(550) = 6 because f(6) = 550.

TABLE | N as a function of ¢ TABLE 2 1 as a function of N
t N =f() t=f"'(N)
(hours) = population at time 7 N = time to reach N bacteria
0 100 100 0
1 168 168 1
2 259 259 2
3 358 358 3
4 445 445 4
5 509 509 5
6 550 550 6
E — 5 7 573 573 7
8 586 586 8

Not all functions possess inverses. Let’s compare the functions f and g whose arrow
diagrams are shown in Figure 1. Note that f never takes on the same value twice (any two
inputs in A have different outputs), whereas g does take on the same value twice (both 2
and 3 have the same output, 4). In symbols,

9(2) = ¢(3)

but fxr) # f(x2) whenever x; # x,

1 g is not
Functions that share this property with f are called one-to-one functions.

Of inputs and outputs, this [I] DEFINITION A function f is called a one-to-one function if it never takes on

it £ is one-to-one i 2 . .
i s one-to-one if each out the same value twice; that is,
only one input.

f(x1) # f(x2) whenever x; # x,

If a horizontal line intersects the graph of f in more than one point, then we see from
Figure 2 that there are numbers x, and x, such that f(x1) = f(x2). This means that f is not
one-to-one. Therefore we have the following geometric method for determining whether a
5 e function is one-to-one.

HORIZONTAL LINE TEST A function is one-to-one if and only if no horizontal line
Ot one-to-one intersects its graph more than once.
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7 EXAMPLE | Is the function Flx) = x> one-to-one?

SOLUTION | If x, # x2, then x? # x3 (two different numbers can’t have the same cyk
Therefore, by Definition 1, f (x) = x* is one-to-one.

SOLUTION 2 From Figure 3 we see that no porizontal line intersects the graph of f(x
more than once. Therefore, by the Horizontal Line Test, f is one-to-one.

7 EXAMPLE 2 Is the function g(x) = x2 one-to-one?
FIGURE 3

f(x)=x* is one-to-one. SOLUTION | This function is not one-to-one because, for instance,
g() =1=g(-=1)

and so 1 and —1 have the same output.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the grag
g more than once. Therefore, by the Horizontal Line Test, g is not one-to-one.

One-to-one functions are important because they are precisely the functions
sess inverse functions according to the following definition.

DEFINITION Let f be a one-to-one function with domain A and range B.

FIGURE 4 its inverse function f ' has domain B and range A and is defined by

g(x) = x* is not one-to-one.
iy =x & f=y

for any y in B.

This definition says that if f maps x into y, then f~' maps y back into x. (If f were
one-to-one, then f~' would not be uniquely defined.) The arrow diagram in Figure
cates that f ' reverses the effect of f. Note that

domain of f! = range of f
FIGURE 5

range of f ' = domain of f

For example, the inverse function of f (x) =x3is f'(x) = x'/3 because if y
F) =f60) = )P =x
CAUTION Do not mistake the —1 in ' for an exponent. Thus

e
f)

f~'(x) does not mean

The reciprocal 1/f(x) could, however, be written as [ f )]~

7 EXAMPLE 3 If f(1) = 5, f(3) = 7, and £(8) = —10, find (7, £715)s
and f~'(—10).
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SOLUTION From the definition of f~! we have
D=3 because f(3) =17
715 =1 because  f(1) =5
f7I(=10) =8  because  f(8) = —10

The diagram in Figure 6 makes it clear how S reverses the effect of f in this case.

A B A B

FIGURE 6
nverse function reverses
inputs and outputs.

O

The letter x is traditionally used as the independent variable, so when we concentrate
on f ! rather than on Jf, we usually reverse the roles of x and y in Definition 2 and write

(3] =y < fO)=x

By substituting for y in Definition 2 and substituting for x in (3), we get the following
cancellation equations:

FUfx) =x for every xin A
f(f7'(x)) = x forevery xin B

The first cancellation equation says that if we start with x, apply f, and then apply f !, we
arrive back at x, where we started (see the machine diagram in Figure 7). Thus ' undoes
what f does. The second equation says that f undoes what £~ does.

FIGURE 7

For example, if f(x) = x*, then f~!(x) = x"/ and so the cancellation equations become

FH ) = ()P =x
FF) = (x?) = x

These equations simply say that the cube function and the cube root function cancel each
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y = f(x) and are
able to solve this equation for x in terms of y, then according to Definition 2 we must have
x = f7!(y). If we want to call the independent variable x, we then interchange x and y and
arrive at the equation y = f~!(x).

v
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& In Example 4, notice how £~ reverses the
effect of £. The function f is the rule “Cube,
then add 2; £ ~" is the rule “Subtract 2, then
take the cube root.”

HOW TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION f

STEP | Write y = f(x).
STEP 2 Solve this equation for x in terms of y (if possible).

STEP 3 To express f ' as a function of x, interchange x and y.
The resulting equation is y = f ~1(x).

\ /"‘y:,x
0/ N

FIGURE 10

L

i EXAMPLE 4 Find the inverse function of f(x) = x* + 2.
SOLUTION According to (5) we first write

y= x> +2
Then we solve this equation for x:

x>=y =2

=352

2

Finally, we interchange x and y:
y=+x—2
Jx = 2.

Therefore the inverse function is f~'(x) = </ 2

The principle of interchanging x and y to find the inverse function also give
method for obtaining the graph of £~ from the graph of f. Since f(a) = b if and
£7'(b) = a, the point (a, b) is on the graph of f if and only if the point (b, a) i
graph of f~'. But we get the point (b, a) from (a, b) by reflecting about the line y
Figure 8.)

yw (b,a) :
j-— /
/ /
//
) /S - ab)
/ X X
Y=

FIGURE 8 FIGURE 9

Therefore, as illustrated by Figure 9:

The graph of f ~1 s obtained by reflecting the graph of f about the line y =

EXAMPLE 5 Sketch the graphs of f(x) = +/—1 — x and its inverse function us
same coordinate axes.
SOLUTION First we sketch the curve y = +/—1 — X (the top half of the parabola
y*=—1-xo0orx=—y>— 1)and then we reflect about the line y = x t0 get
graph of f -1 (See Figure 10.) As a check on our graph, notice that the expressk
£7Vis (%) = —x* = 1,x = 0. So the graph of £~ is the right half of the P2
y = —x* — 1 and this seems reasonable from Figure 10.
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THE CALCULUS OF INVERSE FUNCTIONS

Now let’s look at inverse functions from the point of view of calculus, Suppose that f is
both one-to-one and continuous. We think of a continuous function as one whose graph has
no break in it. (It consists of Just one piece.) Since the graph of £~ is obtained from the
graph of f by reflecting about the line Y = x, the graph of ' has no break in it either (see
Figure 9). Thus we might expect that f~"is also a continuous function.

This geometrical argument does not prove the following theorem but at least it makes
the theorem plausible. A proof can be found in Appendix F,

E] THEOREM If fisa one-to-one continuous function defined on an interval, then
its inverse function f~!is also continuous.

Now suppose that £ is a one-to-one differentiable function, Geometrically we can think
of a differentiable function as one whose graph has no corner or kink in it. We get the graph
of ™! by reflecting the graph of J about the line y = X, 8o the graph of £ ! has no corner
or kink in it either. We therefore expect that f ™' is also differentiable (except where its tan-
gents are vertical). In fact, we can predict the value of the derivative of f~'atagiven point
by a geometric argument. In Figure 11 the graphs of f and its inverse f7" are shown. If
f(®) = a, then f~'(q) = b and (f™1(a) is the slope of the tangent to the graph of ™! at
(a, b), which is tan ¢. Likewise, £'(b) = tan 6. From Figure 11 we see that § + ¢=m/2,
o)

1

tanf  f'(p)

(f )'(a) =tan ¢ = tan(% - 0) =cotf =

= —1\7 = 1
that is, (f Y \f’(f“‘(a))

THEOREM If £ is a one-to-one differentiable function with inverse function !
and f'(f~'(a)) # 0, then the inverse function is differentiable at ¢ and :

(f N =

1
' (a))

PROOF  Write the definition of derivative as in Equation 3.1.5:

(F (@) = tim L% = '@
x—a x — a
If 7(b) = a, then £ (@) = b. And if we let y = f7(x), then f(y) = x. Since f is differ-

entiable, it is continuous, so f~!is continuous by Theorem 6. Thus if x — a, then
f71(x) = £~ (a), that is, Yy — b. Therefore

ey i %) = f ) o y—b

701@) = lim ~—=——= = lim 70) — 1)
. 1 _ 1
TR0 T 70 5
1im
e b y—b y - b

1 " 1

76 T @)
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Replacing a by the general number x in the formula of Theorem 7, we get

L
ax
dy

1
(I = ——r
7 PTG
; ! If we write y = f~'(x), then f(y) = x, so Equation 8, when expressed in Leibniz notg
% % becomes
E | & _
i dx

If it is known in advance that £~' is differentiable, then its derivative
computed more easily than in the proof of Theorem 7 by using implicit differentia
y = f7'(x), then f(y) = x. Differentiating the equation f(y) = x implicitly with reg
x, remembering that y is a function of x, and using the Chain Rule, we get

oy 9 _
f(y)dx 1

dy 1 1

Therefore =—

r dx f'(y) dx

\ / )
EXAMPLE 6 Although the function y = x%, x € R, is not one-to-one and therefore

not have an inverse function, we can turn it into a one-to-one function by restrictin;
domain. For instance, the function f(x) = x2, 0 < x < 2, is one-to-one (by the Ho

0 tal Line Test) and has domain [0, 2] and range [0, 4]. (See Figure 12.) Thus f has
inverse function f~' with domain [0, 4] and range [0, 2].
(@y=x* x€R Without computing a formula for (f~")" we can still calculate (f~')'(1). Since
5 f(1) =1, we have f~!(1) = 1. Also f'(x) = 2x. So by Theorem 7 we have
(2,4)
1 1 1
U = s = = 5
/ d 7)o Fm 2
In this case it is easy to find £~" explicitly. In fact, f~'(x) = v/x, 0 < x < 4. [In g@ :
0 ‘2 7 we could use the method given by (5).] Then (")'(x) = 1/(2+/x ), so (f7)'(1) g
which agrees with the preceding computation. The functions f and f ' are graphet
() fx)=x% 0<x<2 Figure 13.
FIGURE 12 K2 EXAMPLE 7 If f(x) = 2x + cos x, find (f~')(1).
¥ 2.4 SOLUTION Notice that f is one-to-one because %
f f'(x) =2 —sinx>0
4,2
7 2 and so f is increasing. To use Theorem 7 we need to know f~'(1) and we can fi
1,1 inspection:
0 X fO=1 > f(1)=0
1 1 1 1
FIGURE 13 Therefore (fHa = T e T e
f (') f©) 2-sin0 2




ERCISES
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is a one-to-one function?
m you tell from the graph of a function whether it is
ne?
f is a one-to-one function with domain A and
How is the inverse function f~' defined? What is
in of f~'? What is the range of =17
e given a formula for f, how do you find a
afor /17

> given the graph of f, how do you find the graph

n s given by a table of values, a graph, a formula, or
tion. Determine whether it is one-to-one.

10. f(x) =10 — 3x

12. g(x) = |x|
COoS x

cosx, O0sx<

eight of a footbal] seconds after kickoff,
height at age .

0-one function such that f(2) =9, what

%+ cosx, find £71(1),
* Vx, find 47(6).

J one-to-one?
are the domain and range of f~1?

(c) What i$ the value of £~!(2)?
(d) Estimate the value of £~(0).

The formula C = 3(F — 32), where F = —459.67, expresses

the Celsius temperature C as a function of the Fahrenheit tem-
perature . Find a formula for the inverse function and interpret
it. What is the domain of the inverse function?

22. In the theory of relativity, the mass of a particle with speed v is

mo
V1 —v?c?

where rm is the rest mass of the particle and c is the speed of

light in a vacuum. Find the inverse function of f and explain
its meaning.

m=f(v) =

23-28 Find a formula for the inverse of the function.

4x — 1
: =3-2 24, =
23. f(x) =3 —2x 24] f(x) 2% 73
25. f(x) = /10 — 3x 26 y=2x*+3

1-Jx
27,y —— N2
R -

=

=

28. f(x)=2x*—8x, x=2

29-30 Find an explicit formula for f 7" and use it to graph 7!, f,
and the line y = x on the same screen. To check your work, see
whether the graphs of f and f ™" are reflections about this line.

29. f(x) =x*+ 1, 30. f(x)=Vx2+2x, x>0

x=0

31-32 Use the given graph of [ to sketch the graph of £~

33-36

(a) Show that f is one-to-one.

(b) Use Theorem 7 to find ( £ Y.

(¢) Calculate f~'(x) and state the domain and range of £,




33. fx)=x3 a=38

4. f(x) =/x—-2, a=2

36 f(x) =1/(x—1), x>1, a=2

(d) Calculate (f~')(a) from the formula in part (c) and check [(&5]43. Use a computer algebra system to find an expl
that it agrees with the result of part (b). for the inverse function f(x) = /x> + x> + x 1 L. (Your
(e) Sketch the graphs of f and f~' on the same axes. CAS will produce three possible expressions.

35. f(x) =9 —x% 0<x=<3, qg=38
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icit expregy

i ; ) EXplain wh\
two of them are irrelevant in this context.) y

44. Show that h(x) = sin x, x € R, is not one-to-one, bu jgg
restriction f(x) = sinx, —7/2 < x < 7/2, is one-to-gpe
Compute the derivative of f ™' = sin~! by the method of -
Note 2.

37-40 Find (f7')(a).

37. f(x) =2x* + 3x*+ Tx + 4, a=4
38. f(x) =x>+ 3sinx +2cosx, a=
B9 f(x) =3 + x* + tan(mx/2), —1<

40. f(x) =yx*+x2+x+1, a=2

45. (a) If we shift a curve to the left, what happens to its refle
tion about the line y = x? In view of this geometric
principle, find an expression for the inverse of
g(x) = f(x + ¢), where f is a one-to-one function,

2 (b) Find an expression for the inverse of h(x) = flex),
x<1, a=3 where ¢ # 0.

46. (a) If f is a one-to-one, twice differentiable function with

inverse function g, show that

[41.] Suppose £~ is the inverse function of a differentiable func-

| : tion f and f(4) = 5, £'(4) = . Find (f~')(5). §'(x) = f"(g(x))

L (g@)T

42. Suppose f~! is the inverse function of a differentiable func-

tion fand let G(x) = 1/f(x). If f(3)
find G'(2).

1l

=2andf'(3) = 3, (b) Deduce that if f is increasing and concave upward, the
its inverse function is concave downward.

EXPONENTIAL FUNCTIONS AND THEIR DERIVATIVES

If your instructor has assigned Sections 7.2*,
7.3%, and 7.4*, you don't need to read
Sections 7.2-7.4 (pp. 392-421).

FIGURE 1|
Representation of y = 2%, x rational

The function f(x) = 2* is called an exponential function because the variable, x, i
exponent. It should not be confused with the power function g(x) = x? in which the
able is the base.

In general, an exponential function is a function of the form

f@) = a*

where a is a positive constant. Let’s recall what this means.
If x = n, a positive integer, then

n factors

Ifx=0,thena’ =1, and if x = —n, where n is a positive integer, then

If x is a rational number, x = p/q, where p and g are integers and ¢ > 0, then

a* = qg?l1 = JaP = (\q/g)p <

But what is the meaning of a* if x is an irrational number? For instance, what is medl
2¥3 or 577
. . __ A

To help us answer this question we first look at the graph of the function y = 2 B4

X is rational. A representation of this graph is shown in Figure 1. We want to enlaxgj
domain of y = 2* to include both rational and irrational numbers.

v
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There are holes in the graph in Figure 1 corresponding to irrational values of x. We want
to fill in the holes by defining f(x) = 2*, where x € R, so that f is an increasing continu-
ous function. In particular, since the irrational number /3 satisfies

1.7</3 <18

we must have
L7 2‘/5 = 2].8

and we know what 2'7 and 2"® mean because 1.7 and 1.8 are rational numbers. Similarly,
if we use better approximations for /3, we obtain better approximations for 2V?;

1.73 <3 < 1.74 = QMg gina
1732 <3 <1733 = 2V < <17
17320 < /3 < 1.7321 > 2170 < 23 < g1m
173205 < /3 < 173206 = 2173205 < 2V3 < 173206

ct is given in J. Marsden It can be shown that there is exactly one number that is greater than all of the numbers
alculus Unlimited (Menlo
n/Cummings, 1981). For an 917 PARE 91732 917320 2173205

h.edu/~marsden/ and less than all of the numbers
} volume/cu/CU.pdf

21.8 21.74 21,733 2147321 21.73206
We define 2V* to be this number. Using the preceding approximation process we can com-
pute it correct to six decimal places:

2¥3 =~ 3321997

Similarly, we can define 2* (or a*, if @ > 0) where x is any irrational number. Figure 2
shows how all the holes in Figure 1 have been filled to complete the graph of the function
fx) =2 x € R.

In general, if a is any positive number, we define

1] a*=lima”  rrational

r—x

This definition makes sense because any irrational number can be approximated as
closely as we like by a rational number. For instance, because +/3 has the decimal repre-
sentation /3 = 1.7320508 . . ., Definition 1 says that 2 is the limit of the sequence of
numbers

21.7’ 21.73’ 21.732’ 21.7320’ 21.73205’ 21.732050, 21.7320508’

Similarly, 57 is the limit of the sequence of numbers

5341, 53A14’ 53.141, 53.1415’ 53.14159’ 534141592’ 5341415926’

It can be shown that Definition 1 uniquely specifies a* and makes the function fx) =a"
continuous.

]
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The graphs of members of the family of functions y = ¢* are shown in Figure
ious values of the base a. Notice that all of these graphs pass through the same Po
because a’ = 1 for g # 0. Notice also that as the base 4 gets larg

er, the eXponep
tion grows more rapidly (for x > ().

1257

FIGURE 3

Members of the family of
exponential functions

FIGURE 4 FIGURE 5

Figure 4 shows how the exponential function y = 2* compares with the power fi
y = x’ The graphs intersect three times, but ultimately the exponential curve
grows far more rapidly than the parabola y = x? (See also Figure 5.)

You can see from Figure 3 that there are basically three kinds of exponential fus
y=a"If 0<a<|1, the exponential function decreases; if g = 1, it is a co
and if @ > 1, it increases. These three cases are illustrated in Figure 6.

(1/a)* = 1/a* = a™*, the graph of y = (1/a)* is just the reflection of the graph of »
about the y-axis.

(@y=a", 0<a<1 b y=1
FIGURE 6

©)y=a', a>1

The properties of the exponential function are summarized in the following them

=

THEOREM Ifa > O and g # 1, then f(x) = a*is a continuous function witht
domain R and range (0, ). In particular, a* > 0 for all x. Ifo<a<1,f(®

is a decreasing function; if ¢ > 1, f is an increasing function. If a, b > 0and
X,y € R, then

l. ' = g% 2 a7 =— 3. (@) =




gius.com
ce using the Laws of

2 Review of Algebra.

FIGURE 7
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The reason for the importance of the exponential function lies in properties 1-4, which
are called the Laws of Exponents. If x and Y are rational numbers, then these laws are wel]
known from elementary algebra. For arbitrary real numbers x and y these laws can be
deduced from the special case where the exponents are rational by using Equation 1.

The following limits can be read from the graphs shown in Figure 6 or proved from the
definition of a limit at infinity. (See Exercise 69 in Section 7.3.)

[3] If a > 1, then lim a* = « and lim a* =0

x—o xX—>—0

If0 <a <1, then lima*=0 and lim a* =

x—0 x—>=—o

In particular, if a # 1, then the x-axis is a horizontal asymptote of the graph of the expo-
nential function y = a*.

EXAMPLE |
(a) Find lim,—,., 27 — 1).
(b) Sketch the graph of the function y = 27* — 1,

SOLUTION

(a) lim 27 — 1) = Lim [(3)* - 1]

x—>® xX—®

=0-1 [by 3) witha = ! < 1]

= -1

(b) We write y = (%)" — 1 asin part (a). The graph of y = (%)‘ is shown in Figure 3, so
we shift it down one unit to obtain the graph of y = (%)" — 1 shown in Figure 7. (For a
review of shifting graphs, see Section 1.3.) Part (a) shows that the line y = —1 is a hori-

zontal asymptote.

APPLICATIONS OF EXPONENTIAL FUNCTIONS

The exponential function occurs very frequently in mathematical models of nature and
society. Here we indicate briefly how it arises in the description of population growth.
In Section 7.5 we will pursue these and other applications in greater detail.

In Section 3.7 we considered a bacteria population that doubles every hour and saw that
if the initial population is n, then the population after ¢ hours is given by the function
f(t) = no2". This population functiop is a constant multiple of the exponential function
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TABLE |
r | Populatioﬂ
| Year \ (millions)J
1900 1650 |
| 1910 1750 |
| 1920 1860 |
1930 \ 2070 |
1940 2300 |
| 1950 2560 |
1960 3040 ~
\ 1970 3710 |
| 1980 4450 |
| 1990 5280 |

| 2000 | 6080

FIGURE 9
Exponential model for
population growth

y = 2/, so it exhibits the rapid growth that we observed in Figures 2 and 5. Undg
conditions (unlimited space and nutrition and freedom from disease), this expoy
growth is typical of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the
in the 20th century and Figure 8 shows the corresponding scatter plot.

P

6 x10° .

900 1920 1940 1960 1980 2000 !
FIGURE 8 Scatter plot for world population growth

The pattern of the data points in Figure 8 suggests exponential growth, so v
graphing calculator with exponential regression capability to apply the method
squares and obtain the exponential model

P = (0.008079266) * (1.013731)'

Figure 9 shows the graph of this exponential function together with the origi
points. We see that the exponential curve fits the data reasonably well. The perioc
tively slow population growth is explained by the two world wars and the Great
sion of the 1930s.

P

6 %10°

—>

1900 19|20 1§40 1960 19I80 2600 d

DERIVATIVES OF EXPONENTIAL FUNCTIONS

Let’s try to compute the derivative of the exponential function f(x) = a” using
tion of a derivative:

P fx+h) —flx) _ .. at* —a*
i -
Aah T - ax(ah = 1)



3¢— 1

1.1612
1.1047
1.0992
1.0987
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The factor a* doesn’t depend on A, so we can take it in front of the limit:

a"—1

f'(®) = a*lim

Notice that the limit is the value of the derivative of f at 0, that is,

h _
im &1 — £0)

h—0 h

Therefore we have shown that if the exponential function f(x) = a* is differentiable at 0,
then it is differentiable everywhere and

') = f(O)a*

This equation says that the rate of change of any exponential function is proportional to
the function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of f'(0) is given in the table at the left for the
cases a = 2 and a = 3. (Values are stated correct to four decimal places.) It appears that
the limits exist and

h

1
~ 0.69

2
fora =2, f'(0)= )Illrr(l)

h

3
fora=3, f'(0)= %m}) =~ 1.10

In fact, it can be proved that these limits exist and, correct to six decimal places, the val-
ues are

d
[5] < 2% ~ (0.693147 — (3%) ~ 1.098612
dx dx

x=0 x=0

Thus, from Equation 4, we have
d d
(6] — (2%) = (0.69)2* — (3*) = (1.10)3*
dx dx

Of all possible choices for the base a in Equation 4, the simplest differentiation formula
occurs when f'(0) = 1. In view of the estimates of f'(0) fora = 2 and a = 3, it seems rea-
sonable that there is a number a between 2 and 3 for which f'(0) = 1. It is traditional to
denote this value by the letter e. Thus we have the following definition.

DEFINITION OF THE NUMBER e

h
: -1
e is the number such that }llmz) ¢ h =1

Geometrically this means that of all the possible exponential functions y = a*, the
function f(x) = e* is the one whose tangent line at (0, 1) has a slope f'(0) that is exactly 1.



E B Visual 7.2/7.3* uses the slope-a-
! scope to illustrate this formula.
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(See Figures 10 and 11.) We call the function f(x) = e* the natural exponentiq] funey

y b

0 X 0 T e

FIGURE 10 FIGURE 11

If we put @ = e and, therefore, f'(0) = 1 in Equation 4, it becomes the following jm
tant differentiation formula.

T —

[8] DERIVATIVE OF THE NATURAL EXPONENTIAL FUNCTION

d
Z;(ex) :ex

Thus the exponential function f(x) = e* has the property that it is its own derival
The geometrical significance of this fact is that the slope of a tangent line to the &
y = e at any point is equal to the y-coordinate of the point (see Figure 11).

2 EXAMPLE 2 Differentiate the function y = ¢“"*.
SOLUTION To use the Chain Rule, we let u = tan x. Then we have y =-¢e" so

A _dydu
dx du dx

L du
Py il
dx

= = e'"™*gecly

In general if we combine Formula 8 with the Chain Rule, as in Example 2, we gﬁ

] (=it

EXAMPLE 3 Find y' if y = ¢ *sin 5x.

SOLUTION Using Formula 9 and the Product Rule, we have

y' = e *(cos 5x)(5) + (sin 5x)e *(—4) = ¢~**(5 cos 5x — 4 sin 5%)

We have seen that e is a number that lies somewhere between 2 and 3, but i
use Equation 4 to estimate the numerical value of e more accurately. Let e = 251
e* = 2% If f(x) = 2%, then from Equation 4 we have f'(x) = k2*, where the valt€



is proportional to the size
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£'(0) = 0.693147. Thus, by the Chain Rule,

d d d
=—(&*) = — (2%) = g2 2 = ckDcx
(e) 2*) =% (cx) = ck2

Putting x = 0, we have | = ck, so ¢ = 1/k and
e = 21/k A 21/0.693147 . 271828

It can be shown that the approximate value to 20 decimal places is
e =~ 2.71828182845904523536

The decimal expansion of ¢ is nonrepeating because e is an irrational number.

EXAMPLE 4 In Example 6 in Section 3.7 we considered a population of bacteria cells in
a homogeneous nutrient medium. We showed that if the population doubles every hour,
then the population after 7 hours is

n = n02'

where ny is the initial Population. Now we can use (4) and (5) to compute the growth
rate:

dn
o ~ ny(0.693147)2"

For instance, if the initial population is ny = 1000 cells, then the growth rate after two
hours is

d
2 (1000)(0.693147)2' |-,
dt |-

= (4000)(0.693147) ~ 2773 cells/h 0

7 EXAMPLE 5 Find the absolute maximum value of the function f(x) = xe™.
SOLUTION We differentiate to find any critical numbers:
Fx) =xe(=1) + e*(1) = e*(1 — x)

Since exponential functions are always positive, we see that f'(x)>0whenl — x>0,
that is, when x < 1. Similarly, f'(x) < 0 when x > 1. By the First Derivative Test for
Absolute Extreme Values, Jf has an absolute maximum value when x = 1 and the value is

1) = e =1 ~ 037 O

EXPONENTIAL GRAPHS

The exponential function f(x) = e” is one of the most frequently occurring functions in

calculus and its applications, so it is important to be familiar with its graph (Figure 12) and

properties. We summarize these properties as follows, using the fact that this function

is just a special case of the exponential functions considered in Theorem 2 but with base
=ie >,
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PROPERTIES OF THE NATURAL EXPONENTIAL FUNCTION The €Xponentig] U
tion f(x) = e* is an increasing continuous function with domain R and

range
(0, ). Thus e* > 0 for all x. Also

Iim e* =0 lim e* =

xX——m xX—>

So the x-axis is a horizontal asymptote of f(x) = e*.

2x
EXAMPLE 6 Find lim _2)?

x—w @

SOLUTION We divide numerator and denominator by e

2x 1

lim ——— = lim =
e e+ ] xoe ]l +e® ]+ lime

xX—>
1

= =T =
We have used the fact that 1 = —2x — —o as x — o and so
lime ™ = lim e’ =0

xX—>® t—>—o

EXAMPLE 7 Use the first and second derivatives of f(x) = e together with asym
totes, to sketch its graph.

SOLUTION Notice that the domain of f is {x|x # 0}, so we check for vertical asympl
by computing the left and right limits as x — 0. As x — 0%, we know that r = 1/x
S0

lim e'* = lime' = «

x—0t t—o

and this shows that x = 0 is a vertical asymptote. As x — 0~, we have t = 1/x
o)

lim e = lim ' =0

x—0~ t——o

As x — *o, we have 1/x — 0 and so

lim e/ =¢% =]

x—*ow

This shows that y = 1 is a horizontal asymptote.
Now let’s compute the derivative. The Chain Rule gives

el/x

F'0e) = =

Since e'* > 0 and x* > 0 for all x # 0, we have f'(x) < 0 for all x 5 0. Thus f
decreasing on (—, 0) and on (0, ®). There is no critical number, so the function:
maximum or minimum. The second derivative is :

£ = — x%e'*(—1/x%) — e'*(2x) _ e*2x + 1)

X X
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Since e'* > (0 and x* > 0, we have f"(x) > 0 when x > - (x #0) and f"(x) < 0
when x < —3. So the curve is concave downward on ( =, —3) and concave upward on

(=2, 0) and on (0, ). The inflection point is (=3, €.

[Figure 13(a)]. These parts reflect the information concerning limits and the fact that fis
decreasing on both ( —, 0) and (0, »). Notice that we have indicated that f(x) =0 as

* — 0~ even though £(0) does not exist. In Figure 13(b) we finish the sketch by incorpo-
rating the information concerning concavity and the inflection point. In Figure 13(c) we
check our work with a graphing device.

inflection

0

(b) Finished sketch (c) Computer confirmation

INTEGRATION

Because the exponential function Y = e"has a simple derivative, its integral is also simple:

7 EXAMPLE 8 Evaluate f x2%* dx.

SOLUTION We substitute # = x®, Then du = 3xdx, so x2dx = tdu and
fxze"ldx=31fe"du=§e“+C=3le""+C O

EXAMPLE 9 Find the area under the curve y = ¢ 73« from 0 to 1.
SOLUTION The area is

A= fol e ¥dx = —%e'“]’é =3i(1—e?) O
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7.2 | EXERCISES

I. (a) Write an equation that defines the exponential function
with base a > 0.
(b) What is the domain of this function?
(c) If a # 1, what is the range of this function?

(d) Sketch the general shape of the graph of the exponential

function for each of the following cases.
(i a>1 (i) a=1 (i) 0<a<1

2. (a) How is the number e defined?
(b) What is an approximate value for e?
(c) What is the natural exponential function?

3-6 Graph the given functions on a common screen. How are

these graphs related?

.y=2% y=ef, y=5% y=20°
4. y=¢", y=e™* y=8, y=8
[Bly=3% y=10% y=(G), y=)

6. y=109% y=0.6" y=03" y=0.1*

7-12 Make a rough sketch of the graph of the function. Do not

use a calculator. Just use the graphs given in Figures 3 and 12 and,

if necessary, the transformations of Section 1.3.

7.y=4"-3 8. y=4"
10. y=1+ 2¢*

12. y=2(1 - &)

Starting with the graph of y = e, write the equation of the
graph that results from
(a) shifting 2 units downward
(b) shifting 2 units to the right
(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the x-axis and then about the y-axis

14. Starting with the graph of y = ¢, find the equation of the
graph that results from
(a) reflecting about the line y = 4
(b) reflecting about the line x = 2

15-16 Find the domain of each function.

1

15. (a) f(x) = T+

- 3 fll =

(b) 9() =v1 -2

\[6/' (a) g(r) = sin(e™)

- 17-18 Find the exponential function f(x) = c,* whose
given.
07z
(3,24)
(1,6)
/
0 X

18.

19.

Ga[rIN

A4 22.

Suppose the graphs of f(x) = x? and g(x) = 2* are
a coordinate grid where the unit of measurement is
Show that, at a distance 2 ft to the right of the origi
height of the graph of f is 48 ft but the height of th
of g is about 265 mi.

. Compare the rates of growth of the functions f(x) :

g(x) = 5* by graphing both functions in several vie
angles. Find all points of intersection of the graphs
one decimal place.

Compare the functions f(x) = x'* and g(x) = e*b)
both f and g in several viewing rectangles. Whend
graph of g finally surpass the graph of f?

Use a graph to estimate the values of x such that
e* > 1,000,000,000. .

23-30 Find the limit.

23.

25.
27.

29.

/ . :
lim (1.001)* '24.\ lim (1001)x
x—> | x—>— :
3x 3%

e —e = L
lim R o '26. lim e
x—o g% 4 e x—>00
lim ¢3¢ 28, lim ¥/® %
x—2+ 2"

. 1an

lim (e™%* cos x) 30. _)1(1512)}




iate the function.

2x)e" /32 y=

_

x

e

1 #+x

?4 Yy =e"(cosu + cu)
(36,/4(x) = Jx e

(387 f(1) = sin(e’) + esin!

/ 40, y = etanvx
e
4. y=
+ e+ e

4. y =14+ xe

ZX ’,/“\“
/ | = a2l sin?
zx) r\ﬁ f() = sin?(es"™)

=
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equation of the tangent line to the curve at the

x

. (0,1) y= e; (1,e)

X T Y.

tion of the tangent line to the curve
1 at the point (0, 1).

€ function y = e* + "2 satisfies the differen-
‘2yll_yl _y=0.

he function y = Ae™ + Bxe™ satisfies the differ-
ion y” + 2yt +y=0.

ues of r does the function Yy = e’ satisfy the
6y' + 8y =07

$ of A for which y = ¢ satisfies the equation

Sandth derivative of f(x) = xe*.

fitermediate Value Theorem to show that there is
the equation e* + y = 0.

0n’s method to find the root of the equation in
OITect to six decimal places.

find an initia] approximation (to one decimal
100t of the equation 4¢sin x = X —x+1.
n’s method to find the root correct to eight

CIrcumstances a rumor spreads according to the

1

+ ae

—kt

) = y

Sthe proportion of the population that knows the

403

rumor at time ¢ and @ and k are positive constants. [In Sec-
tion 10.4 we will see that this is a reasonable model for p(1).]
(2) Find lim, ... p(z).

(b) Find the rate of spread of the rumor.

Al (c) Graph p for the case a = 10, k = 0.5 with ¢ measured in
hours. Use the graph to estimate how long it will take for
80% of the population to hear the rumor.

A5 60

- An object is attached to the end of a vibrating spring
and its displacement from its equilibrium position is

y = 8¢ %sin 4t, where ¢ is measured in seconds and y is
measured in centimeters.

(a) Graph the displacement function together with the func-

tions y = 8¢™? and y = —8¢~/2, How are these graphs
related? Can you explain why?

(b) Use the graph to estimate the maximum value of the dis-
placement. Does it occur when the graph touches the
graph of y = 8¢729

(c) What is the velocity of the object when it first returns to
its equilibrium position?

(d) Use the graph to estimate the time after which the
displacement is no more than 2 cm from equilibrium.

61. Find the absolute maximum value of the function
f(x) =x— e~

62. Find the absolute minimum value of the function
g(x) = e*/x, x > 0.

63-64 Find the absolute maximum and absolute minimum values

of f on the given interval.

63. f(x) =xe™"8, [-1,4] @f(x) = x%, [-1,6]
/_/

65-66 Find (a) the intervals of increase or decrease, (b) the inter-
vals of concavity, and (c) the points of inflection.

65. f(x) = (1 — x)e 66. f(x) = f—:
-_—

67-68 Discuss the curve using the guidelines of Section 4.5.

y = e~ W&+

68. y = ¢ *sinx

69. A drug response curve describes the level of medication in
the bloodstream after a drug is administered. A surge
function S(7) = AtPe™* is often used to model the response
curve, reflecting an initial surge in the drug level and then a
more gradual decline. If, for a particular drug, A = 0.01,

P =4,k =0.07, and ¢ is measured in minutes, estimate the
times corresponding to the inflection points and explain their
significance. If you have a graphing device, use it to graph
the drug response curve.

v
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% 70-71 Draw a graph of f that shows all the important aspects of
the curve. Estimate the local maximum and minimum values and
then use calculus to find these values exactly. Use a graph of f”
to estimate the inflection points.

A

70. f(x) = e~

71 f(x) = e’

——————

72. The family of bell-shaped curves

e~ w20

1

YT ovam
occurs in probability and statistics, where it is called the nor-
mal density function. The constant M is called the mean and
the positive constant o is called the standard deviation. For
simplicity, let’s scale the function SO as to remove the factor
1/(0\/27) and let’s analyze the special case where u=0.
So we study the function

}(‘(X) - e-‘.\':/lZO‘z)

(a) Find the asymptote, maximum value, and inflection points
of f.

(b) What role does o play in the shape of the curve?

(c) Iustrate by graphing four members of this family on the
same screen.

73-82 Evaluate the integral.

73. [:e"‘* dx ”74.‘!.]"01 xe™* dx
3 v + N2
@] [ VT + e dx 76. [(]\f)dx
J i e

77. ' (e* + e™)2gx
79. ' sin x e“** dx

78. [e*(4 + e%)’ dx

1/x
s0. | ex—za’x

Vx

dx 82. fe‘sin(e*)dx

-_— O

83.

84.

85.

[86)

Find, correct to three decimal places, the area of the region
bounded by the curves y = ¢+ y=e* andx =1,

Find f(x) if f"(x) = 3e* + 5 sin x, f(0) = 1, and £'(0) = 2.

Find the volume of the solid obtained by rotating about the

x-axis the region bounded by the curves y = ¢*, y=0,x=0,
and x = 1.
. Find the volume of the solid obtained by rotating Zabout the

y-axis the region bounded by the curves y = ¢+
x=0,and x = 1.

¥ =0,

87.

88.

89.

90.

A 91.

A 92.

93.

94.

95.

The error function

X

- ( e dr
|

is used in probability, statistics, and engineering

() Show that [? ™" dr = 3 \/ar [erf(b) — erf(a)],

(b) Show that the function y = e*’zerf(x) satisfies the
ential equation y’ = 2xy + 2/,

erf(x)

A bacteria population starts with 400 bacteria ang an
rate of r(r) = (450.268)e"1>" hacteria per hour. Hoy
bacteria will there be after three hours?

If f(x) =3 + x + ¢ find (F14).

sinx __ 1

Evaluate lim

x>

X =

If you graph the function

1 — el/.l

1 + el/,\

f(x)

you’ll see that f appears to be an odd function. Prove

Graph several members of the family of functions

1
1 + ge™

S(x)

where a > 0. How does the graph change when b cha
How does it change when « changes?

(a) Show that e* = 1 + x if x = 0.
[Hint: Show that f(x) = ¢* — (1+x
for x > 0.]

is increasin

(b) Deduce that 5 < jo' edx <e.

(a) Use the inequality of Exercise 93(a) to show that, f
x:=0, '

1
e*=1+x + 3x?

(b) Use part (a) to improve the estimate of ‘I'O' e* dx gV
Exercise 93(b).

(a) Use mathematical induction to prove that for x =0
any positive integer n,

2 n

X X
e-‘>1+x+;+-~-+—~

n!
(b) Use part (a) to show that ¢ > 2l
(c) Use part (a) to show that

. e
lim —
x—w X

[ee]

for any positive integer k.
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’ 7.3 | LOGARITHMIC FUNCTIONS
ee—

Ifa>0anda # 1, the exponential function f(x) = g~ is either increasing or decreasing
and so it is one-to-one. It therefore has an inverse function £, which is called the logarith-
mic function with base g and is denoted by log,. If we use the formulation of an inverse
function given by (7.1.3),

=y & fy)=x
then we have

(1] L log.x=y < g =x j

Thus, if x > 0, then log,x is the exponent to which the base a must be raised to give x.

EXAMPLE | Evaluate (a) log; 81, (b) logys 5, and (c) log100.001.

SOLUTION

(a) logs81 =4 because 3% =81

(b) logas5 =3 because 2572 =5

(¢) logi0.001 = =3 because 103 = 0.001 O

The cancellation equations (7.1.4), when applied to f(x) = a* and F7(x) = log, x,
become

log,(a*) = x for every x € R

s a*=x foreveryx > 0

The logarithmic function log, has domain (0, ) and range R and is continuous since it
* is the inverse of a continuous function, namely, the exponential function. Its graph is the
reflection of the graph of y = a* about the line y = x.

y=log,x a>1 Figure 1 shows the case where ¢ > 1. (The most important logarithmic functions have
base a > 1.) The fact that y =a"is a very rapidly increasing function for x > 0 is
reflected in the fact that y = log, x is a very slowly increasing function for x > 1. _
Figure 2 shows the graphs of y = log,x with various values of the base a. Since

log,1 = 0, the graphs of all logarithmic functions pass through the point (1, 0).

The following theorem summarizes the properties of logarithmic functions,

=l [3] THEOREM Ifg > 1, the function f(x) = log, x is a one-to-one, continuous, 7
increasing function with domain (0, ) and range R. If x, y > 0 and r is any real
number, then

x I. log,(xy) = log,x + log,y

2. loga(£> = log.x — log,y
b

3. log,(x") = rlog,x
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w NOTATION FOR LOGARITHMS

Most textbooks in calculus and the sciences, as
well as calculators, use the notation In x for the
natural logarithm and log x for the “common
logarithm,” log 0. In the more advanced mathe-
matical and scientific literature and in computer
languages, however, the notation log x usually
denotes the natural logarithm.

Properties 1, 2, and 3 follow from the corresponding properties of exponentig]
given in Section 7.2.

EXAMPLE 2 Use the properties of logarithms in Theorem 3 to evaluate the follg
(a) logs2 + logs32 (b) log.80 — log,5

SOLUTION
(a) Using Property 1 in Theorem 3, we have

logs2 + logs32 = logs(2 + 32) = logs64 =3
since 4° = 64.
(b) Using Property 2 we have
log280 — log,5 = logy(¥) = log,16 = 4
since 2* = 16.

The limits of exponential functions given in Section 7.2 are reflected in the fg
limits of logarithmic functions. (Compare with Figure 1.)

If a > 1, then

lim log, x = @ and lim log,x = —

x—® x—0%

In particular, the y-axis is a vertical asymptote of the curve y = loggx.

EXAMPLE 3 Find lirr(l) log;o(tan’x).

SOLUTION As x —> 0, we know that 7 = tan’x — tan’ 0 = 0 and the values of t are
So by (4) witha = 10 > 1, we have

lirr(l) logjo(tan’x) = lir(g logiot = —®
x—> t—

NATURAL LOGARITHMS

Of all possible bases a for logarithms, we will see in the next section that the m
venient choice of a base is the number e, which was defined in Section 7.2. The
with base ¢ is called the natural logarithm and has a special notation:

‘ log,x =Inx 4]

If we put a = e and replace log, with “In” in (1) and (2), then the defining P
of the natural logarithm function become ’

(5] ‘ Inx=y < e =x
(6] In(e*) = x xER
er=x x>0
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In particular, if we setx = 1, we get

EXAMPLE 4 Find x if In x = 5.

SOLUTION | From (5) we see that
Inx=5  means e’ =
Therefore x = ¢5.

(If you have trouble working with the
€quation becomes log,x = 5; 80, by the d

SOLUTION 2 Start with the equation

“In” notation, Just replace it by log,. Then the
efinition of logarithm, ¢5 — %.)

Inx=35

and apply the €Xxponential function to both sides of the €quation:

But the second cancellation equation in (6) says that e'n* — Therefore x = ¢5. O
q y

5-3%=mh10
3x=5-1n10
x=3(5-1In10)

Since the natura] logarithm i

IS, We can approximate the
solution: to four decimal Places, x ~ 0.8991. a
7 EXAMPLE 6 ExpressIna + inp a5 4 single logarithm,
SOLUTION Using Properties 3 and 1 of logarithms, we have
Ina+3inb=ng+ 1pp12
=Ina+Inp
= In(av/b) (]

The following formula shows that logarithms with any base can be expressed in terms
of the natura] logarithm.

v

P
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FIGURE 3

FIGURE 4

CHAPTER 7 INVERSE FUNCTIONS

————— T
CHANGE OF BASE FORMULA For any positive number a (a # 1),

In x
log,x = ——
Ina

L -

PROOF Let y = log,x. Then, from (1), we have a” = x. Taking natural logarithmg,
sides of this equation, we get ylna = In x. Therefore

_ Inx

) = —

Ina

Scientific calculators have a key for natural logarithms, so Formula 7 enables yg
a calculator to compute a logarithm with any base (as shown in the following ex;

Similarly, Formula 7 allows us to graph any logarithmic function on a graphing caj,
or computer (see Exercises 20-22).

EXAMPLE 7 Evaluate log, 5 correct to six decimal places.

SOLUTION Formula 7 gives

In5
logs5 = —> ~ 0.773976
In8

The graphs of the exponential function y = e” and its inverse function, the natur;
arithm function, are shown in Figure 3. Because the curve Yy = e” crosses the y-axi
a slope of 1, it follows that the reflected curve Y = Inx crosses the x-axis with a slop

In common with all other logarithmic functions with base greater than 1, the p
logarithm is a continuous, increasing function defined on (0, %) and the y-axis is a v
asymptote.

If we put a = ¢ in (4), then we have the following limits:

(8] lim In x = oo lim Inx = —
“--\.0*

‘ x—®

L

&7 EXAMPLE 8 Sketch the graph of the function y=In(x-2) - 1.

SOLUTION We start with the graph of y = Inx as given in Figure 3. Using the transfon
tions of Section 1.3, we shift it 2 units to the right to get the graph of y = In(x — 2)
then we shift it 1 unit downward to get the graph of y = In(x — 2) — 1. (See Figure
Notice that the line x = 2 is a vertical asymptote since

lim [In(x — 2) - 1] = —w

3,-1)
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We have seen that In x — @ as x — o, But this happens very slowly. In fact, In x grows
more slowly than any positive power of x. To illustrate this fact, we compare approximate

o values of the functions y = Inx and y = x'/ = \/x in the following table and we graph
4 them in Figures 5 and 6. "

i x |1 2] 5 | 10| 50 [ 100 | 500 | 1000 | 10000 | 100,000
x Inx | 0 | 069 | 161 | 230 | 391 | 46 | 62 | 69 | 92 115
Vr | 1] 141 | 224 | 316 | 707 | 100 | 224 | 316 | 100 316
Inx
7o | 0| 049|072 | 073 | 055 | 046 | 028 | 022 | 009 0.04
=\x

You can see that initially the graphs of y = v/x and Yy = In x grow at comparable rates,
but eventually the root function far surpasses the logarithm. In fact, we will be able to show
y=Inx in Section 7.8 that

. lim—— =0
y . xX—® xP
1000 *

for any positive power p. So for large x, the values of In x are very small compared with
x”. (See Exercise 70.)

s the logarithmic function y = log,x defined? " 3x?
1.1 12. In——
i the domain of this function? Bwe) R
is the range of this function?
h the general shape of the graph of the function
log,x ifa > 1. 13-18 Express the quantity as a single logarithm.
the natural logarithm? 13. logia — logio b + logio ¢
s the common logarithm? -
the graphs of the natural logarithm function and @I“(X +y) +In(x = y) = 2Inz
Vra] . . .
exponential function with a common set of IS. In5+ 5In3 16. 3+ 'In8
. 17. In(1 + x?) + $Inx — Insinx
exact value of each expression. -~
&5 Tog (18,/In(a + b) + In(@ - b) — 2Inc
(b) login/10
(b) e"'s 19. Use Formula 7 to evaluate each logarithm correct to six deci-
mal places.
: (b) logs320 — logs 5 (a) logn e (b) logs 13.54 (©) logs 7
= log,15 + log,20
— logs18 — log; 50 20-22 Use Formula 7 to graph the given functions on a com-

0 0
(b) ln(ln ¢t ) mon screen. How are these graphs related?

20. y =log>x, y=logsx, y=1logex, y=loggx

Toperties of logarithms to expand the quantity. 2. y=logisx, y=Inx, y=logiox, y=logsx

10. In Va(b? + c?) 22. y=Inx, y=logwx, y=e* y=10*

v
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23-24 Make a rough sketch of the graph of each function. Do not
use a calculator. Just use the graphs given in Figures 2 and 3 and,
if necessary, the transformations of Section 1.3.

23] (a) y = logio(x + 5) (b) y=—Inx
24. (a) y = In(—x) (b) y=1In|x|
25-34 Solve each equation for x.

25. (a)2Inx =1 (b) e*=35

(b) In(5 — 2x) = -3
() Inx+In(x—1)=1

.,;"‘2?.; (@) e —7=0
27) @) 255 = 3

28. (a) e¥' =k

29. 3xe* + x%* =0
3I. In(lnx) = 1

33. e —e*—6=0

(b) loga(mx) = ¢
30.110(1 + ™)' =3

32, e =10
B4 In(2x + 1) =2 —Inx

35-36 Find the solution of the equation correct to four decimal
places.

35. (a) e?** = 100
36. (@) In(1 +x)=2

(®) In(e* —2) =3
(b) 3/ =7

{oudness, in decibels (dB), of a sound with intensity Tisy
defined to be L = 10 logio(1/Iy). Amplified rock music j
measured at 120 dB, whereas the noise from a motor-drjy,
lawn mower is measured at 106 dB. Find the ratio of the i
sity of the rock music to that of the mower. 3

43. If a bacteria population starts with 100 bacteria and dom;j
every three hours, then the number of bacteria after ¢ hqﬁ
is n = f(z) = 100 - 23,
(a) Find the inverse of this function and explain its meapj
(b) When will the population reach 50,0007

44. When a camera flash goes off, the batteries immediatelyl
to recharge the flash’s capacitor, which stores electric cha
given by

Q) = Qy(1 — e™9)

(The maximum charge capacity is Qo and 7 is measured

seconds.)

(a) Find the inverse of this function and explain its mean

(b) How long does it take to recharge the capacitor to 9(
capacity if a = 27

45-50 Find the limit.

45. llrgl+ In(x? — 9) 46. 11121 log,(8x — x*)

[47. lim In(cos x) 48. lim In(sin x)

x—0%
37-38 Solve each inequality for x.
49. lim [In(1 + x?) — In(1 + x)]
37. (a) < 10 (b) Inx> —1 frared
38 (2)2<lnx<9 (b) ¥ > 4 50. lim [In(2 + x) = In(1 + x)]
39.] Suppose that the graph of y = log, x is drawn on a coordinate 51-52 Find the domain of the function.
grid where the unit of measurement is an inch. How many 51, F(x) = logio(x* — 9) ( 52/,‘ £(x) = Inx + In@

miles to the right of the origin do we have to move before the
height of the curve reaches 3 ft?

40., The velocity of a particle that moves in a straight line under the
influence of viscous forces is v(t) = ce ™™, where c and k are
positive constants.

(a) Show that the acceleration is proportional to the velocity.
(b) Explain the significance of the number c.
(c) At what time is the velocity equal to half the initial velocity?

41. The geologist C. E. Richter defined the magnitude of an
earthquake to be logio(//S), where [ is the intensity of the
quake (measured by the amplitude of a seismograph 100 km
from the epicenter) and S is the intensity of a “standard”
earthquake (where the amplitude is only 1 micron = 10~* cm).
The 1989 Loma Prieta earthquake that shook San Francisco
had a magnitude of 7.1 on the Richter scale. The 1906 San
Francisco earthquake was 16 times as intense. What was its
magnitude on the Richter scale?

42. A sound so faint that it can just be heard has intensity
Ip = 107" watt/m? at a frequency of 1000 hertz (Hz). The

\.

53-54 Find (a) the domain of f and (b) £~ and its domait
53. f(x) =3 —e* 54. f(x) =In(2 + Inx

55-60 Find the inverse function.
55. y = In(x + 3)
f)=e*

1
59. y= 10g10<1 + —)
X

(56.\y = 21"
58. y=(nx? xZ

61. On what interval is the function f(x) = e** — ¢* incred

62. On what interval is the curve y = 2¢* — e " concave
downward?

63. On what intervals is the curve y = (x> — 2)e " conca¥t
upward?



seriod from 1980 to 2000, the percentage of house-
the United States with at least one VCR has been
by the function

85

) =TT 5300

time 7 is measured in years since midyear 1980, so
. Use a graph to estimate the time at which the
VCRs was increasing most rapidly. Then use

to give a more accurate estimate.

that the function f(x) = In(x + /X% + 1) is an
ction.
e inverse function of f.

pation of the tangent to the curve y = e~ that is
lar to the line 2x — y = 8.

the equation x'/™™* = 2 has no solution. What can

bout the function f(x) = x'/x9

mction of the form f(x) = [g(x)]"*, where g(x) > 0,
alyzed as a power of e by writing g(x) = ™9™ so

¥) = ¢"@™9) Using this device, calculate each limit.
(b) Xl_igl+ x—lnx

(d) lim (In 2x)7'"*

1. Prove, using Definitions 4.4.6 and 4.4.7, that

na* =0 (b) lim a* = o

mpare the rates of growth of f(x) = x%! and

= In x by graphing both f and g in several viewing
tangles. When does the graph of £ finally surpass the
ph of g7

1ph the function 2(x) = (In x)/x*' in a viewing rect-
that displays the behavior of the function as x — .

SECTION 7.4 DERIVATIVES OF LOGARITHMIC FUNCTIONS 1 4r1

(c) Find a number N such that

if x>N then —r<0.1
o

71. Solve the inequality In(x* — 2x — 2) < 0.

72. A prime number is a positive integer that has no factors
other than 1 and itself. The first few primes are 2, 3, 5, 7, 11,
13, 17,. ... We denote by 7(n) the number of primes that are
less than or equal to n. For instance, 7(15) = 6 because there
are six primes smaller than 15.

(a) Calculate the numbers 7(25) and 7(100).

[Hint: To find 7(100), first compile a list of the primes up
to 100 using the sieve of Eratosthenes: Write the numbers
from 2 to 100 and cross out all multiples of 2. Then cross
out all multiples of 3. The next remaining number is 5, so
cross out all remaining multiples of it, and so on.]

(b) By inspecting tables of prime numbers and tables of loga-
rithms, the great mathematician K. F. Gauss made the
guess in 1792 (when he was 15) that the number of
primes up to n is approximately n/In n when n is large.
More precisely, he conjectured that

fim —T®)_ _
n—= n/lnn

This was finally proved, a hundred years later, by Jacques
Hadamard and Charles de la Vallée Poussin and is called
the Prime Number Theorem. Provide evidence for the
truth of this theorem by computing the ratio of 7(n) to
n/In n for n = 100, 1000, 104, 10°, 108, and 10”. Use the
following data: 7(1000) = 168, 7(10*) = 1229,
m(10°) = 9592, 7(10°) = 78,498, 7(107) = 664,579.
(c) Use the Prime Number Theorem to estimate the number
of primes up to a billion.

DERIVATIVES OF LOGARITHMIC FUNCTIONS

(1]

PROOF

nential functions y = a*

In this section we find the derivatives of the logarithmic functions y = log, x and the expo-
. We start with the natural logarithmic function y = In x. We know
that it is differentiable because it is the inverse of the differentiable function y = e*.

1

d
—q( =
dx(nx) X

Let y = In x. Then
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Differentiating this equation implicitly with respect to x, we get

dy
Y— =1
¢ dx
dy 1 1
ds —_— ==
andso dx e’ X

I EXAMPLE | Differentiate y = In(x® + 1).
SOLUTION To use the Chain Rule, we let u = x> + 1. Then y = In u, so

dy_dvau_lau_ 1 3
dx dudx wudx xX*+1 x}+1

In general, if we combine Formula 1 with the Chain Rule as in Example 1, we

d 1 du d g9'(x)
el = [ =
dx L u dx o dx [in ()] g(x)
. d )
7 EXAMPLE 2 Find — In(sin x).
dx
SOLUTION Using (2), we have
d 1
Lo In(sin x) = ————(sinx) = ——cos x = cot x
dx sin x dx nx

EXAMPLE 3 Differentiate f(x) = +/In x.

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

EXAMPLE 4 Find - In ———
ind — In —F—.
w Figure 1 shows the graph of the function f dx Vx =2

of Example 4 together with the graph of its deriv-~ SOLUTION |

ative. It gives a visual check on our calculation.
Notice that f'(x) is large negative when f is _(.1_ In xt+1 = 1 _d_ x+t1
rapidly decreasing and f'(x) = 0 when f has dx \/x =2 x+1 dx \/)T— 2

a minimum. /x — 2

) R e R R () Ca)
L_/f/ T ox+1 x— 2
x— 9

g x—2—%(x+1)_
x+Dx—-2 2x+ Dx -2

0 X
f! SOLUTION 2 If we first simplify the given function using the laws of logarithms,
differentiation becomes easier:
d x+1 d S 1 1 (ﬂ_l,,
— In—F—=—|ln(x + 1) —3In(x = 2)] = — =
FIGURE | dx | Jx-2 dx[n(x )~ tin(x = 2)] x+1 2\x—

v
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(This answer can be left as written, but if we used a common denominator we would see
that it gives the same answer as in Solution 1.) O
EXAMPLE 5 Find the absolute minimum value of f(x) = x*In x.

SOLUTION The domain is (0, %) and the Product Rule gives
1
fix) =x*—+2xInx=x(1 + 21n x)
X

Therefore f'(x) = 0 when 21n x = —1, that is,Inx=—1 orx=¢12 Also, f'(x) >0
when x > e and f'(x) < 0 for 0 < x < =12, So, by the First Derivative Test for
Absolute Extreme Values, f (1 /e ) = —1/(2e) is the absolute minimum. O

EXAMPLE 6 Discuss the curve y = In(4 — x?) using the guidelines of Section 4.5.

SOLUTION
A. The domain is

{x[4 —x*>0}={x|x*< 4} = {x||x] < 2} = (-2, 2)
B. The y-intercept is £(0) = In 4. To find the x-intercept we set
y=In(4 —-x*)=0

We know that In 1 = log, 1 = 0 (since ¢° = 1),sowehave4 — x?=1=x2=3
and therefore the x-intercepts are +./3.
. Since f(—x) = f(x), f is even and the curve is symmetric about the y-axis.
D. We look for vertical asymptotes at the endpoints of the domain. Since 4 — x2 —» 0F
as x — 27 and also as x — —2%, we have

(o]

lil‘gl» In(4 — x2) = —0 and lir_];+ In(4 — x2) = —o0

by (7.3.8). Thus the lines x = 2 and x = —2 are vertical asymptotes.

=2x

x2

E 6=+

Since f'(x) > 0 when —2 < x < 0 and f'(x) <Owhen0 < x <2, [ is increasing
on (=2, 0) and decreasing on (0, 2).

F. The only critical number is x = 0. Since /' changes from positive to negative at 0,
f(0) = In 4 is a local maximum by the First Derivative Test.

£ = 4 - xH)(-2) + 2x(—2x) ~ ~8— Dx

G. =
(4 — x*)? (4 — x*)?
Since f"(x) < 0 for all x, the curve is concave downward on (—2, 2) and has no
inflection point.
H. Using this information, we sketch the curve in Figure 2. |

K2 EXAMPLE 7 Find f'(x) if f(x) = In|x|.
SOLUTION Since

Inx o« if x>0
ﬂﬂz{mhn if x<0

v
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it follows that

Thus f'(x) = 1/x for all x # 0.

The result of Example 7 is worth remembering:

d 1
| — o
3 o (nlx]) =~

The corresponding integration formula is

1
f;dx=ln|x|+C

Notice that this fills the gap in the rule for integrating power functions:

n+l
X

n+1

fx"dx: +C  ifn#—1

The missing case (n = —1) is supplied by Formula 4.

EXAMPLE 8 Find, correct to three decimal places, the area of the region under the
hyperbola xy = 1 fromx = 1 to x = 2.

y 1 SOLUTION The given region is shown in Figure 3. Using Formula 4 (without the absoly
YTx value sign, since x > 0), we see that the area is
2 1 2
\]\ A=| —dx=1In x]l
e I 1 x
0 1 ‘ 2 t
\ =In2-Inl=1In2~0.693
area=1In2

X
K EXAMPLE 9 Evaluate [ ———dx.

FIGURE 3 x5k 1

SOLUTION We make the substitution u = x2 + 1 because the differential du = 2xdx 0

(except for the constant factor 2). Thus x dx = 3 du and

[—dx=l d—u=lln|u|+C
Jx?+1 il

=zln|x2+ 1|+ C=jl(x*+ 1)+ C




() = (n)/xin
e for x > 1, the integral
of the shaded region in
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Notice that we removed the absolute value signs because x> + 1 > 0 for all x. We could
use the properties of logarithms to write the answer as

Invx2+1+4+C

but this isn’t necessary. |

.1
2 EXAMPLE 10 Calculate fl LA
X

SOLUTION We let u = In x because its differential du = dx/x occurs in the integral. When
x=1u=1Inl=0;whenx=e,u=1Ine = 1. Thus

7 EXAMPLE 11 Calculate f tan x dx.

SOLUTION First we write tangent in terms of sine and cosine:

ftanxdx=f B dx

cos X
This suggests that we should substitute u = cos x since then du = —sin x dx and so
sin xdx = —du:
sin x du
ftanxdx=f dx=—| —
cos x u
= —In|u| + C= —In|cos x| + C O

Since —In[cos x| = In(1/|cos x|) = In|sec x|, the result of Example 11 can also be
written as

[5] J.tanxdx=ln]secx|+C

GENERAL LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Formula 7 in Section 7.3 expresses a logarithmic function with base a in terms of the nat-
ural logarithmic function:

o _Inx
Ba Ina

Since In a is a constant, we can differentiate as follows:

d d Inx
E(logax) =——= (Inx) = R

L a
dx Ina Ina dx
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EXAMPLE 12 Using Formula 6 and the Chain Rule, we get

P . 1 d . Cos x
—1 S S = (2 =k I |
e 0g10(2 + sin x) (2 + sinx) In 10 dx 2+ sin z) (2 + sinx) In 19

From Formula 6 we see one of the main reasons that natural logarithmg (log

with base e) are used in calculus: The differentiation formula is simplest whe
because Ine = 1.

EXPONENTIAL FUNCTIONS WITH BASE ¢ In Section 7.2 we showed that the de
of the general exponential function f(x) = a’,a > 0, is a constant multiple of it

f() =fOa*  where  f£(0) = fim L1

h—0

We are now in a position to show that the value of the constant is £'(0) = Ip a.

PROOF  We use the fact that e = 4:

d 1 ¢ d (In a) (Ina)x d
sl XY nayx _— _7 na)x _ na)x _ " 1
dx (@) dx (™) dx ¢ ¢ dx lmajs

= (e™)(lna) = a*lna

In Example 6 in Section 3.7 we considered a population of bacteria cells that d
every hour and we saw that the population after ¢ hours is n = n,2’, where ny is the
population. Formula 7 enables us to find the growth rate: '

—d? = 1n2'In 2

EXAMPLE 13 Combining Formula 7 with the Chain Rule, we have

d 2 2 d 2
= (107) = 10*(1n 10)5 (x?) = (21n 10)x10*

The integration formula that follows from Formula 7 is
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5
x 25 0
EXAMPLE 14 f: 2%dx = = ] . £

m2|, -n2 2 In2

LOGARITHMIC DIFFERENTIATION

The calculation of derivatives of complicated functions involving products, quotients, or
powers can often be simplified by taking logarithms. The method used in the following
example is called logarithmic differentiation.

A xr+ 1

EXAMPLE 15 Differentiate y = 3x + 2)°
X

SOLUTION We take logarithms of both sides of the equation and use the properties of loga-
rithms to simplify:
Iny=3Inx+ 3ln(x* + 1) = 5In(3x + 2)

Differentiating implicitly with respect to x gives

1dy 3 1
—_———= . — 4+
y dx 4 «x

l 2x _s 3
2 x*+4+1 3% 4.2

Solving for dy/dx, we get

d_y_ _3_+ x 15
dx 4x x2+1 3x + 2

Because we have an explicit expression for y, we can substitute and write

used logarithmic differentiation in

jould have had to use both the T R
ind the Product Rule. The resulting ﬂ = o x+1 i > — 15
ild have been horrendous. dx Bx+28 \4x x24+1 3x+2

STEPS IN LOGARITHMIC DIFFERENTIATION

I. Take natural logarithms of both sides of an equation y = f(x) and use the
properties of logarithms to simplify.

2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y’.

If f(x) <0 for some values of x, then In f(x) is not defined, but we can write
|¥| = | f(x)| and use Equation 3. We illustrate this procedure by proving the general ver-
sion of the Power Rule, as promised in Section 3.3.

THE POWER RULE If n is any real number and f(x) = x", then

f'(x) = nx"!

PROOF Let y = x" and use logarithmic differentiation:
show that £/(0) = 0 for

the definition of a derivative. In|y|=In|x|"=nln|x|] x#0

v

o Of
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!
y n
Therefore i —_=—
y X
y x" -
Hence Y =n==n—=px""!
X X

@ You should distinguish carefully between the Power Rule [(d/dx) x" = pyn-t
the base is variable and the exponent is constant, and the rule for dlffere'matmu
tial functions [(d/dx) a* = a* In a], where the base is constant and the exponent is

In general there are four cases for exponents and bases:

1. 4 (@®) =0  (aand b are constants)
dx
d =
2. — )] = b/ 0] f')
x

d

3. = [a®] = a*“(In a)g'(x)

4. To find (d/dx)[ f(x)]°”, logarithmic differentiation can be used, as in the n
example.

7 EXAMPLE 16 Differentiate y = x*.

SOLUTION | Using logarithmic differentiation, we have

Iny=Inx"=xInx

w Figure 5 illustrates Example 16 by showing
the graphs of £(x) = x"* and its derivative. y Jr 1
a3

1
+ (In x) N

oy Ly Inx ) g2+ Inx
PN T k) T e

SOLUTION 2 Another method is to write x¥* = (¢'*)¥*:

y

d d
t = fsevE \/—Inx = \/_lnx
o/ ; e dx(x ) = dx( )=e (\/_lnx)
FIGURE 5 f<22+}x> fassins Solkition 1)

THE NUMBER e AS A LIMIT

We have shown that if f(x) = In x, then f'(x) = 1/x. Thus f'(1) = 1. We now us
to express the number e as a limit.
From the definition of a derivative as a limit, we have

£1(1) = f(1+h) f(1)=1im f(A+x —f(Q1)
h x—0 x
= 1imw et T T . )
x—0 X x—=0 X

T = lim In(1 + x)!”
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Because f'(1) = 1, we have
lim In(1 + x)'* = 1
Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

i 1/x . 1/x .
e = el — ehm,_,oln(1+x) = lim eln(l+x) = lim (1 S JC)l/x
x—0 x—0

e=lim(1 + Pl

Formula 8 is illustrated by the graph of the function y = (1 + x)"* in Figure 6 and a
table of values for small values of x.

I' X 1+ x)'=
l' 0.1 2.59374246
| 0.01 2.70481383
I' 0.001 2.71692393
S, 0.0001 2.71814593
! 0.00001 2.71826824
| 0.000001 2.71828047
l 0.0000001 2.71828169
EIGURE & 0.00000001 2.71828181

If we put n = 1/x in Formula 8, then n — o as x — 0* and so an alternative expression

for e is
. 1\"
5] e=lim |1+ —
n—o n

CISES
Y the natural logarithmic function y = In x is used 13. g(x) = In(xy/x?> = 1) 14. F(y) = yIn(l + ¢”)

€quently in calculus than the other logarithmic I

- log, x. nu 42

a 5. - =1
15. f(u) T ) y = In(x* sin*x)
e the function. , ,
7. h(t) =1t> — 3' 18. y =10"
+10) (49 y
_ 2 2 _ 2
, 4. f(x) = In(sins) 19. y=In|2 — x — 5x? 20. H(z) = Iny | = Z
(1 — 3x) 6. f(x) = logs(xe®) @
8 f(x) =Inx 2L] y = In(e™ + xe™) 22. y = [In(1 + €%)]?
’-ln(Sx) 10. f() = 1+ ;n d 23. y = 2x 10g10\/; v 24. y = log,(e™* cos mx)
: 1—1In¢ 2
3 — &-1/x — 03"
2+ 1) 25.y=5 26. y=2

3 - 1) 12. h(x) = ln(x + x2 — 1)
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27-30 Find y’ and y".
27. y = x?In(2x)

29. y =In(x + /1 + x2)

28. y = (Inx)/x?

30. y = In(sec x + tan x)

31-34 Differentiate f and find the domain of f.

X 1
BL] £(x) = 1 —In(x — 1) 32. f(x) = 1 +1Inx
33. f(x) = In(x?* — 2x) 34. f(x) =Inlnlnx
35. Iff(x) = =", find (1),
36. If f(x) = In(1 + ¢*), find £(0).

37-38 Find an equation of the tangent line to the curve at the
given point.

37. y = In(xe®), (1,1) 38. y=In(x*-7), (2,0)

39. If f(x) = sinx + In x, find f'(x). Check that your answer is

reasonable by comparing the graphs of f and f.

40. Find equations of the tangent lines to the curve y = (In x)/x

at the points (1, 0) and (e, 1/e). Illustrate by graphing the
curve and its tangent lines.

41-52 Use logarithmic differentiation to find the derivative of the
function.

41, y = (2x + 1)°(x* = 3)° 4. y=x e (x* + 1)

[x*+ 1
Y= 4_2_
xo=1

sin’x tan*x

43. y= e 44,
[45] y = x* 46. y = x°*
[47] y = x* 4. y=/x"
49. y = (cos x)* 50. y = (sin x)"*
51. y = (tanx)'* 52. y = (In x)**

53. Find y' if y = In(x? + y?).
Find y’ if x” = y*,
55. Find a formula for £®(x) if f(x) = In(x — 1).

9

d
56. Find
in R

(x%1In x).

57-58 Use a graph to estimate the roots of the equation correct

to one decimal place. Then use these estimates as the initial
approximations in Newton’s method to find the roots correct to
six decimal places.

57. (x — 4)*=Inx 58. In(4 — x?) =x

(59.] Find the intervals of concavity and the inflection

function f(x) = (In x)/y/x.

60. Find the absolute minimum value of the function
f(x) =xInx.

rin

2
.

61-64 Discuss the curve under the guidelines of SeCtl()n .
61. y = In(sin x)
63. y =In(1 + x?)

62. y = In(tan’) :
64. y=In(x> - 35 4

65. If f(x) = In(2x + x sin x), use the graphs of f, fi
estimate the intervals of increase and the inflection
f on the interval (0, 15].

. Investigate the family of curves f(x) = In(x? + c). b
happens to the inflection points and asymptotes as ¢ ch
Graph several members of the family to illustrate whay
discover.

A 66

[ 67. The flash unit on a camera operates by storing charge .
capacitor and releasing it suddenly when the flash is s
The following data describe the charge Q remaining on
capacitor (measured in microcoulombs, wC) at time t(
sured in seconds).

t 0.00
| 2

(a) Use a graphing calculator or computer to find an e
nential model for the charge.
(b) The derivative Q'(¢) represents the electric current
sured in microamperes, pA) flowing from the capa
the flash bulb. Use part (a) to estimate the current ¥
t = 0.04 s. Compare with the result of Example 2
Section 2.1. 31

0.02 0.04 0.06 0.08

100.00 | 81.87 | 67.03 | 54.88 | 44.93

68. The table gives the US population from 1790 to 186

Year Population Year Population;'
1790 | 3,929,000 1830 | 12,861,000
1800 | 5,308,000 1840 | 17,063, 000‘
1810 | 7,240,000 1850 | 23,192, 000
1820 | 9,639,000 1860 | 31 ,443,000.1

(a) Use a graphing calculator or computer to fit an ;
tial function to the data. Graph the data points
exponential model. How good is the fit?

(b) Estimate the rates of population growth in 1800
by averaging slopes of secant lines.

(c) Use the exponential model in part (a) to esnma@
of growth in 1800 and 1850. Compare these es
with thie ones in part (b).
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nential model to predict the population in 84. Find the volume of the solid obtained by rotating the region
are with the actual population of 38,558,000. under the curve

plain the discrepancy? 1

e

s the integral.

from 0O to 3 about the y-axis.

24 + u?
70 [* =" ,
1 u 85. The work done by a gas when it expands from volume V,
, 1\2 to volume V; is W = [* P dV, where P = P(V) is the
72. J; <\/; + 77) dx pressure as a function of the volume V. (See Exercise 27 in
Section 6.4.) Boyle’s Law states that when a quantity of gas
sin(In x) expands at constant temperature, PV = C, where C is a con-
74 .[ % dx stant. If the initial volume is 600 cm® and the initial pressure
is 150 kPa, find the work done by the gas when it expands at
76. f lex- X constant temperature to 1000 cm’®.
J 2+ sinx
o 86. Find fif f"(x) =x"% x>0, f(1) = 0, and f(2) = 0.
7 f e+ 1 & 87. If g is the inverse function of f(x) = 2x + In x, find ¢'(2).
80. fx2‘2 dx 88. If f(x) = ¢* + In x and h(x) = f'(x), find A'(e).
) 89. For what values of m do the line y = mx and the curve
- y = x/(x* + 1) enclose a region? Find the area of the region.
M cot xdx = In |sin x| + C by (a) differentiating A

{14 90. (a) Find the linear approximation to f(x) = In x near I.
(b) Ilustrate part (a) by graphing f and its linearization.
bt (c) For what values of x is the linear approximation accurate
rect to three decimal places, the area of the region to within 0.1?
hyperbola y = 2/(x — 2), below the x-axis, and
oy
i€ lines x = —4 and x = —1.

de of the equation and (b) using the method of

Use the definition of derivative to prove that

olme of the solid obtained by rotating the region In(1 + x)
g lim————=1

x—0 X

92. Show that lim <1 + i) = e¢* for any x > 0.
n—x n

7.2¥| THE NATURAL LOGARITHMIC FUNCTION

tEy

igned Sections In this section we define the natural logarithm as an integral and then show that it obeys
Clons 7.2%.73",  the usual laws of logarithms. The Fundamental Theorem makes it easy to differentiate this
function.

(1] DEFINITION The natural logarithmic function is the function defined by

A
1nx=f|7dt 550

The existence of this function depends on the fact that the integral of a continuous func-
tion always exists. If x > 1, then In®x can be interpreted geometrically as the area under
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b/
v
T 7
area =Inx
0! 1 1
FIGURE |
4
0 bl |
FIGURE 2
Iy
vl
\A
N
E| D
B C
0 1 2
FIGURE 3

the hyperbola y = 1/t from t = 1 to t = x. (See Figure 1.) For x = 1, we have

1
1n1=f7dt=o

i ]
For0<x<1, 1nx=f17dz=~f’7dz<0

and so In x is the negative of the area shown in Figure 2.

2 EXAMPLE |
(a) By comparing areas, show that; < In2 < 3,
(b) Use the Midpoint Rule with n = 10 to estimate the value of In 2.

SOLUTION 5
(a) We can interpret In 2 as the area under the curve y = 1/t from 1 to 2. From Fig

we see that this area is larger than the area of rectangle BCDE and smaller than the
of trapezoid ABCD. Thus we have '

2el<mlm2<1-i(1+1)
;<h2<?

(b) If we use the Midpoint Rule with f(r) = 1/z,n = 10, and Az = 0.1, we get

In2 = f:%dt ~ (0.D[£(1.05) + f(1.15) + - - - + £(1.95)]

1 1 1
=0 =5 s e S
( )<1.05 1.15 1.95) i

Notice that the integral that defines In x is exactly the type of integral discussedin)
of the Fundamental Theorem of Calculus (see Section 5.3). In fact, using that thel
we have '

L
dxiliit X

and so
o i
2 sl = =
L dx(nx) X

We now use this differentiation rule to prove the following properties of the
function.

(3] LAWS OF LOGARITHMS If x and y are positive numbers and r is a ration
number, then

l. ln(xy) =Inx + ll'ly 2. h’](—{) =lnx — lny 3. ln(xr) =rnx
X




SECTION 7.2* THE NATURAL LOGARITHMIC FUNCTION I 423

PROOF
I. Let f(x) = In(ax), where a is a positive constant. Then, using Equation 2 and the
Chain Rule, we have

A d 1 1
f@= vl =g
ax dx ax X

Therefore f(x) and In x have the same derivative and so they must differ by a constant:
In(ax) =Inx + C
Putting x = 1 in this equation, we getlna=1In1+ C =0 + C = C. Thus
In(ax) =Inx + Ina
If we now replace the constant a by any number y, we have
In(xy) =Inx +Iny

2. Using Law 1 with x = 1/y, we have
1 1
In—+hy=Inl—:y]=mh1=0
y y

and so In—=—Iny

<=

Using Law 1 again, we have

1
ln<£> ———ln(x'l) =lnx+In—=Inx—Iny
y ¢ Y

The proof of Law 3 is left as an exercise. O

! (x2 + 5)*sin x
EXAMPLE 2 Expand the expression In e

o
SOLUTION Using Laws 1, 2, and 3, we get

2+ geile
ln_(_x_}S_:_ism_x =In(x* + 5)* + Insinx — In(x* + 1)
*

=41In(x*+ 5) + Insinx — In(x> + 1) O

EXAMPLE 3 Express Ina + ; In b as a single logarithm.
SOLUTION Using Laws 3 and 1 of logarithms, we have

lna+%lnb=1na+lnb1/2=ln_a+1n\/-b—=1n(a\/27_) o

In order to graph y = In x, we first determine its limits:

[4] (a) limlnx = (b) 1i1’(1)1+ Inx = —o
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y=Inx

FIGURE 4

y=Inx

FIGURE 5

1.02 ,

0.98 . . .
247 24015

FIGURE 6

PROOF
(a) Using Law 3 with x = 2 and r = n (where n is any positive integer),
In(2") = nln 2. Now In 2 > 0, so this shows that In(2") — © as n — «_ B
increasing function since its derivative 1/x is positive. Therefore In x — o0 4
(b) If we let t = 1/x, then t — o as x — 0. Thus, using (a), we have

1
lirgl Inx = lim ln<—t) =lim(=In¢?) = —»
x—0t t—0 t—o

If y=1Inx, x > 0, then

dy 1

S >0 and Tl

which shows that In x is increasing and concave downward on (0, ). Putting th

tion together with (4), we draw the graph of y = In x in Figure 4.
Since In 1 = 0 and In x is an increasing continuous function that takes on

large values, the Intermediate Value Theorem shows that there is a number wher

on the value 1. (See Figure 5.) This important number is denoted by e.

[5] DEFINITION e is the number such that In e = 1.

EXAMPLE 4 Use a graphing calculator or computer to estimate the value of e..

SOLUTION According to Definition 5, we estimate the value of e by graphing the
y = In x and y = 1 and determining the x-coordinate of the point of intersecti
zooming in repeatedly, as in Figure 6, we find that

e~2718

With more sophisticated methods, it can be shown that the approximate val
decimal places, is

e =~ 2.71828182845904523536

The decimal expansion of e is nonrepeating because e is an irrational numb
Now let’s use Formula 2 to differentiate functions that involve the natur
function.

7 EXAMPLE 5 Differentiate y = In(x> + 1).
SOLUTION To use the Chain Rule, we let u = x* + 1. Then y = In u, so

dy. o dy du. 1du 1 il A
i (3x)—x3+1

dx iduvdy i iudx s i

In general, if we combine Formula 2 with the Chain Rule as in Examplel

!,

d g
Wi e l =
ax 7 ar 7 Ung(] = 2




of the function f

on our calculation.
negative when f is
x) = 0 when f has

the graph of its deriv-
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cid :
EXAMPLE 6 Find d—ln(sm X).
x
SOLUTION Using (6), we have
d _ I 1
=—Ialsin ) = o i (sin x) = —— ¢og x = cot x [
dx sin x dx sin x

EXAMPLE 7 Differentiate f(x) = V/Inx.

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

d 1 1 1
1 ALY
1 =_1 1/2___1 e =
F) 2(In ) dx(nx) 2{/lnx 2x+/In x =
d Xt

EXAMPLE8F'd——l A

i dx n,/x—2
SOLUTION |

d bl 1 d x+1

|

dx n\/x—2 T E\/x—Z
X9

LNERD EE D(3)(x — 2)-172

x +1 Xe—=0

x—2—%(x+1)_ X5
EDr=23) T oG+ )(x - 2)

SOLUTION 2 If we first simplify th

e given function using the laws of logarithms, then the
differentiation becomes easier:

gy ; oty
PR o | 0 g S DSOS R0 RO ) SR
dr " JE=7 T g b+ 1) — finGx — 2)] X+ 1 2<x—2>

(This answer can be left as written, but if we used a common denominator we would see
that it gives the same answer as in Solution 1.) a
EXAMPLE 9 Discuss the curve ¥y = In(

SOLUTION
A. The domain is

4 — x?) using the guidelines of Section 4.5.

{x[4 —x2> 0} = {x|x*< 4} = {x||x] <2} = (=2.9)
B. The y-intercept is f(0) = In 4. To find the X-intercept we set
y=mh@ -x*=0

We know that In 1 = 0, so we have 4 — x? =1 =5 32 = 3 44 therefore the
x-intercepts are +./3

(@)
©»
=
(@]
[¢]
-
o
I
e
&
~
=
2
a
=
oL
=3
(¢]
o
5
o
S
w

Symmetric about the y-axis.
D. We look for vertical asymptotes at the endpoints of the domain. Since 4 — x? — Q%
asx — 27 and also as x — —2%, we have
lir?_ In(4 — ¥*) = 0" . 4nd lin%+ In(4 — x?) = —o

by (4). Thus the lines x = 2 and x = —2 are 'vertical asymptotes.

v
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E. .. filx) = _T2x

4 — x*
y Since f'(x) > 0 when —2 < x < O and f'(x) < 0 when 0 < x < 2,
0,1n4) on (=2, 0) and decreasing on (0, 2).
E. The only critical number is x = 0. Since f' changes from positive to

=—2
¢ £(0) = In 4 is a local maximum by the First Derivative Test.

4 = x>)(—2) + 2x(—2x) el
(4 - x*) 4 — x?y

V3,00 | 3.0 G. ) =

Since f"(x) < 0 for all x, the curve is concave downward on (—2.23
inflection point.

FIGURE 8 H. Using this information, we sketch the curve in Figure 8.
y=In(4 —x?)

[ [
[ |
| l
| |
! |
‘I\ 0 /;
| l
1 |
| [
[ |
| |

I7 EXAMPLE 10 Find f'(x) if f(x) = In|x|.
SOLUTION Since

nl=x)aif %<0

ﬂﬂ={mx if x>0

it follows that

— it x >0

) =9y

1
—(-1)=— ifx<0
=X X

Thus f'(x) = 1/x for all x # 0.

The result of Example 10 is worth remembering:

d 1
E(IHIXI)*; l

The corresponding integration formula is

1
f;dx=lnlx|+C

Notice that this fills the gap in the rule for integrating power functions:

n+l1
X
jx"dx=
n+1

+C ifn# —1

The missing case (n = —1) is éupplied by Formula 8.

-
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X
K EXAMPLE 11 Evaluate [ —"— 4y,
C e |

SOLUTION We make the substitution ¥ = x2 + | because the differential dy = 2x dx occurs
(except for the constant factor 2). Thus xdx = 1 du and
% Lad
fx2+ —de =3 —=ihful+C
=sln|x*+ 1|+ C=;ln(x>*+ 1)+ C

Notice that we removed the absolute value signs because x2 + ] > 0 for all x. We could
use the properties of logarithms to write the answer as

Invx2+1+C

but this isn’t necessary. O

e ln X
EXAMPLE 12 Calculate fl e
X

SOLUTION We let u = In x because its differential du = dx/x occurs in the integral. When
xX=1l,u=Inil =0;whenx=¢,u=Ine = 1. Thus

1

el 2 1
Hdx=f’udu=“— =— O
1y 0 2 o 2
£ EXAMPLE 13 Calculate | tan xdx.
SOLUTION First we write tangent in terms of sine and cosine:
sin x
f tan xdx = f dx
coS x
This suggests that we should substitute U = cos x since then du = —sin xdx and so
sin xdx = —du:
sin x du
fonrde[S02, _ rdu
cos x u
= ~Infu| + C= —In|cos x| + C |

Since ~In|cos x| = In(1/|cos x|) = In | sec x|, the result of Example 13 can also be
written as

(9] L ftanxdx=ln[§ecx]+c
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& If we hadn't used logarithmic differentiation in
Example 14, we would have had to use both the
Quotient Rule and the Product Rule. The resulting
calculation would have been horrendous.

7.2

EXERCISES

CHAPTER 7 INVERSE FUNCTIONS

LOGARITHMIC DIFFERENTIATION

The calculation of derivatives of complicated functions involving products,
powers can often be simplified by taking logarithms. The method used in the
example is called logarithmic differentiation.

x4 xt + 1
(Bx +2)y °

SOLUTION We take logarithms of both sides of the equation and use the Laws of |
rithms to simplify: ]

iZ EXAMPLE 14 Differentiate ¥

Iny=3mnx+2inG*+1) - 51n(3x + 2)
Differentiating implicitly with respect to x gives

bl
Y dx

l 2x 3
2 x?ik ]

B ]
= — — 4
4. cix
Solving for dy/dx, we get
et
dx dylxtidl gy 49
Because we have an explicit expression for ¥, We can substitute and write

dy_x3/4\/x2+1<3 e 15 )

di Bk \Ay gL maw

STEPS IN LOGARITHMIC DIFFERENTIATION

of Logarithms to simplify.
2. Differentiate implicitly with respect to x.

Ll Solve the resulting equation for y'.

I. Take natural logarithms of both sides of an equation y = f(x) and use the Law

If f(x) <O for some values of x, then In f(x) is not defined, but we
|| = | f(x)| and use Equation 7. :

I1-4 Use the Laws of Logarithms to expand the quantity.

7. In(1 + x¥) + iInx — Insinx

1 :/2_ 2. ln\/;m 8. In(a+5b) +In(a—b) —2Inc
34s
3. o)t i 3x* 9-12 Make a rough sketch of the graph of each functio
e el )3 use a calculator. Just use the graph given in Figure 4 and.1
sary, the transformations of Section 1.3.
: 9. y=-Inx 10. y =1In|x|
. 5-8 Express the quantity as a single logarithm. .
- . s i Il. y=In(x + 3) 12 y=1+ In(x =
: 5. n5+5mn3 6. In3+1iIn8

?z :




= 1In(1 + x)]
e the function.
: 16. f(x) = In(x* + 10)
18. f(x) = In(sin%)
20. f(x) =Inx
In(5x) 22. h(x) = In(x + /x> = 1)
o I-+:n?
— 4. =—
’ 10 1i=:n't
+1)° & a® - z*
Iy 26. H(z) = In s
e 1) y = In(x* sin%)
30. y = (In tan x)?
1n(2u) 4 ( )
g5 32. y = Intan’x
ax + b)] 34. y = In|cos(Inx) |

36. y = In(sec x + tan x)

38. f(x) =In(x* — 2x)

40. f(x) =Inlnln x

X
2 find f(1).

, find " (e).

- Check that your answer is reasonable by com-
of fand f'.

4. f(x) =In(x*+x+1)

uation of the tangent line to the curve at the

(1,0) 46. y=In(x*-17), (2,0)

In(x? + y2),

Xy = ysin x.
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49. Find a formula for f®(x) if f(x) = In(x — 1).
d9 i
50. Find —d—x—g(x8 In x).

(1] 51-52 Use a graph to estimate the roots of the equation correct
to one decimal place. Then use these estimates as the initial
approximations in Newton’s method to find the roots correct to
six decimal places.

5l (x—4)2=Inx 52. (4 — x*) =x

53-56 Discuss the curve under the guidelines of Section 4.5.
53. y = In(sin x)
55. y = In(1 + x?)

54. y = In(tan’x)
56. y = In(x* — 3x + 2)

57. If f(x) = In(2x + x sin x), use the graphs of f, ', and f"to
estimate the intervals of increase and the inflection points of
f on the interval (0, 15].

58. Investigate the family of curves f(x) = In(x> + ¢). What
happens to the inflection points and asymptotes as ¢ changes?
Graph several members of the family to illustrate what you
discover.

59-62 Use logarithmic differentiation to find the derivative of the

function.
3 + 1 4s’ 2
59. y = 2x + 1)%(x* — 3)° 60. y= Lx—%
X
sin’x tanx x4+ 1
Ol e 62, y =
20 Gy ¢ -1

63-72 Evaluate the integral.

4 3 24 + u?
63. L;dx 64. | i

2 Soredt 9 it
6 [ 6. . <\/E+~\/x=) dx,

ex?+x+1 6 dx
67.[}———)( dx f e

COS x
A o U e
. f2+sinx .

72, f sin(In x) i
x

f__(lnxx)z dx

sin 2x
7N. | ————d
-[1+coszx ~

73. Show that [ cot xdx = In|sin x| + C by (a) differentiating
the right side of the equation and (b) using the method of
Example 13.

74. Find, correct to three decimal places, the area of the region
above the hyperbola y = 2/(x — 2), below the x-axis, and
between the lines x = —4 and x = —1.
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15;

76.

78.
79.

[ so0.

77.

ki 8l.

Find the volume of the solid obtained by rotating the region
under the curve y = 1/4/x + 1 from 0 to 1 about the x-axis.

Find the volume of the solid obtained by rotating the region

under the curve
1

y=x2+1

from 0 to 3 about the y-axis.

The work done by a gas when it expands from volume V;

to volume V, is W = [* P dV, where P = P(V) is the
pressure as a function of the volume V. (See Exercise 27 in
Section 6.4.) Boyle’s Law states that when a quantity of gas
expands at constant temperature, PV = C, where C is a con-
stant. If the initial volume is 600 cm’ and the initial pressure

is 150 kPa, find the work done by the gas when it expands at

constant temperature to 1000 cm”.
Find f if f"(x) = x 7%, x >0, f(1) = 0, and f(2) =0.
If g is the inverse function of f (x) = 2x + In x, find g'(2).

(a) Find the linear approximation to f (x) = In x pear 1.
(b) Tllustrate part (a) by graphing f and its linearization.

(c) For what values of x is the linear approximation accurate

to within 0.1?
(a) By comparing areas, show that
lemis<s

(b) Use the Midpoint Rule with n = 10 to estimate In 1.5.

7.3

82. Refer to Example 1.
(a) Find an equation of the tangent line to the curye
that is parallel to the secant line AD.
_(b) Use part (a) to show that In 2 > 0.66.

83. By comparing areas, show that

1 1 1 1 1
—t—F it —<hn<l+-—=—+=438
g Rt 2
84. Prove the third law of logarithms. [Hint: Start
that both sides of the equation have the same de

5

85. For what values of m do the line y = mx and the
y = x/(x* + 1) enclose a region? Find the area of

86. (a) Compare the rates of growth of f (x) = x% and
g(x) = In x by graphing both f and g in several
rectangles. When does the graph of f finally §
graph of g?

(b) Graph the function A(x) = (In x)/x! in a viewing
angle that displays the behavior of the function as
(c) Find a number N such that ”

X
— < 0.1

then
X 0.1

ifaxit=r N

Use the definition of derivative to prove that

(4 x)
M
x—0 X:

1

THE NATURAL EXPONENTIAL FUNCTION

“

Since In is an increasing

=y & f)=x

[

function, it is one-to-one and therefore has an inverse fi
which we denote by exp. Thus, according to the definition of an inverse function,

hy—%x l

!

exp(x) =y <

and the cancellation equations are

FE ()=
FUW) = ‘

exp(lnx) = x

and

In(exp x) = x J

In particular, we have

We obtain the graph of y = exp x by reflecting the graph of y =

v

exp(0) =1 since Inl1=0
exp(l) =e since Ine=1

In x abot
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y = x. (See Figure 1.) The domain of exp is the range of In, that is, (—0e, »); the range of
exp is the domain of In, that s, (0, ).
If r is any rational number, then the third law of logarithms gives
Ine’) =rlne=r

Therefore, by (1), exp(r) = e’

Thus exp(x) = e whenever x is a rational number. This leads us to define e*, even for irra-
tional values of x, by the equation

* = exp(x)

In other words, for the reasons given, we define e* to be the inverse of the function In x. In
this notation (1) becomes

3] =y i iiny =%

and the cancellation equations (2) become

ey x>0

(5] In(e*) = x for all x

EXAMPLE | Find xif Inx = 5.
SOLUTION | From (3) we see that

Inx=35 means e’ =x

Therefore x = e°.

SOLUTION 2 Start with the equation
Inx=>5

and apply the exponential function to both sides of the equation:
elnx o eS

But (4) says that ¢"™* = x. Therefore x = e’. O

EXAMPLE 2 Solve the equation ¢~ = 10.
S0LUTION We take natural logarithms of both sides of the equation and use ):
1n(e5l;3‘) =1In10
5—3x=1n10
3x=5—-1n10
=1(5-1n10)
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Since the natural logarithm is found on scientific calculators, we can approxin
solution to four decimal places: x =~ 0.899]

The exponential function f(x)
in calculus and its applications, s

and its properties (which follow
mic function).

= e" is one of the most fre
0 it is important to be famj
from the fact that it is the i

quently OCcurrin,
liar with jts graph
nverse of the nagyy,

(6] PROPERTIES OF THE NATURA

L EXPONENTIAL FUNCT
tion f(x) = e* is an increasin

ION The €Xponentia]

g continuous function with domain R and rang;
(0, ). Thus e* > for all x. Also
FIGURE 2 lim e* = lim ¢* = o
The natural exponential function o

x>0

So the x-axis is a horizontal asymptote of f(x) = e~

2x
EXAMPLE 3 Find lim — ;
xow et 4 ]

SOLUTION We divide numerator and denominator by ¢%:

2 I 1
lim = lim =
s el U ne g ot 1 + lim ¢

X—>®

We now verify that f(x) = e” has the properties expected of an exponentf

PROOF OF LAW | Using the first law of logarithms and Equation 5, we have

In(e*e’) = In(e*) + In(€)=x+y= In(e**?)

Since In is a one-to-one function, it follows that e'e’ =
Laws 2 and 3 are proved similarl
next section, Law 3 actually holds,

ex+y

Y (see Exercises 95 and 96). As we will
when 7 is any real number.




es the slope-a-
ormula.

slope =1
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DIFFERENTIATION

The natural exponential function has the remarkable property that it is its own derivative.

d
e =e

PROOF  The function y = e* is differentiable because it is the inverse function of y = In x,
which we know is differentiable with nonzero derivative. To find its derivative, we use
the inverse function method. Let Y =¢e" Thenlny = x and, differentiating this latter
equation implicitly with respect to x, we get

—-:y:e’ D

The geometric interpretation of Formula 8 is that the slope of a tangent line to the curve
Y = e* at any point is equal to the y-coordinate of the point (see Figure 3). This property
implies that the exponential curve Y = e” grows very rapidly (see Exercise 100).
i EXAMPLE 4 Differentiate the function y = e

SOLUTION To use the Chain Rule, we let u = tan x. Then we have y = ¢“ so

dy dy du du 5 5
g o R S T S8 ey =
dy oliide T xR

In general, if we combine Formula 8 with the Chain Rule, as in Example 4, we get

i T
£ E(e)_e dx

EXAMPLE 5 Find y' if y = ¢ **sin 5x.
SOLUTION Using Formula 9 and the Product Rule, we have

y' = e *(cos 5x)(5) + (sin Sx)e (—4) = (5 cos 51 — 4 sin 5x) O

X

i EXAMPLE 6 Find the absolute maximum value of the function f(x) = xe™*
SOLUTION We differentiate to find any critical numbers:
f(x) =xe*(—1) + e7*(1) = (1 - x)

Since exponential functions are always positive, we see that f'(x) > 0 when 1 — x > 0,
that is, when x < 1. Similarly, f'(x) < 0 when x > 1. By the First Derivative Test for
Absolute Extreme Values, / has an absolute maximum value when x = 1 and the value is

F(1) = (1)e-! =‘t-i-~co.37 O
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(a) Preliminary sketch
FIGURE 4

CHAPTER 7 INVERSE FUNCTIONS

EXAMPLE 7 Use the first and second derivatives of f(x) = e'/*

, together with ag
totes, to sketch its graph. :

SOLUTION Notice that the domain of f is {x|x # 0}, so we check for vertical asym
by computing the left and right limits as x — 0. As x — 0", we know that 7 = {
SO

lim e'/* =lime' =

x—0t 1>
and this shows that x = 0 is a vertical asymptote. As x — 07, we have r = |/~
SO

lim e'* = lim ¢' =0

x—0- =~

As x — *o, we have 1/x — 0 and so

lim e'/F =l =1

This shows that y = 1 is a horizontal asymptote.
Now let’s compute the derivative. The Chain Rule gives

el/x

)
x

Since e¢'/* > 0 and x> > 0 for all x # 0, we have f'(x) < 0 for all x # 0. Thus_

decreasing on (—2°, 0) and on (0, ). There is no critical number, so the functior

maximum or minimum. The second derivative is

£ = — x2%e'*(—1/x?) — e'*(2x) & e*2x + 1)

X X

Since e'* > 0 and x* > 0, we have f"(x) > 0 when x > —3 (x # 0) and f"(x)
when x < —3. So the curve is concave downward on (—00, —%) and concave upy
(=3, 0) and on (0, ). The inflection point is (=3, e7?).

To sketch the graph of f we first draw the horizontal asymptote y = 1 (as a¢
line), together with the parts of the curve near the asymptotes in a preliminary s
[Figure 4(a)]. These parts reflect the information concerning limits and the factt
decreasing on both (—c, 0) and (0, «). Notice that we have indicated that f (x}e
x — 0~ even though f£(0) does not exist. In Figure 4(b) we finish the sketch by |
rating the information concerning concavity and the inflection point. In Figure 4
check our work with a graphing device.

y

inflection

(b) Finished sketch (c) Computer confirmation
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INTEGRATION

Because the exponential function y = ¢* has a simple derivative, its integral is also simple:

fe"dx=e"+C

7 EXAMPLE 8 Evaluate f x2%* dx.

SOLUTION We substitute = x°. Then du = 3x2dx, so x*dx = 1 du and
J.xze"]dx = %fe"du =3e'+ C=1Lie”+C

EXAMPLE 9 Find the area under the curve y = ¢~ from 0 to 1.

SOLUTION The area is

A= edi= -l ] =11 - &) O

e graph of the function f(x) = e* with par-
how the graph crosses the y-axis. What fact

ression,

(b) In(1/e)
(b) In(In &)
(b) ex+lnx

16. ()2 <Ilnx<9 (b) e%rd =4

Or x.

() e?=5

() In(5 — 2x) = -3

®) Inx+In(x—1) =1
(b) e =10

10. 10(1 + ™)' =3
2] m@2x+1)=2—Inx

17-20 Make a rough sketch of the graph of the function. Do not
use a calculator. Just use the graph given in Figure 2 and, if neces-
sary, the transformations of Section 1.3.

17. y=¢* 18. y=1 + 2¢*

09]y=1-le~ 20. y =2(1 — ¢%)

21-22 Find (a) the domain of fand (b) f 7! and its domain.
2l f(x) = /3 — e¥* 22. f(x) =In(2 + Inx)

f the equation correct to four decimal

(b) In(e* —2) =3
(b) el/(x—4) =7

23-26 Find the inverse function.

23. y=In(x + 3) 24. y=(lnx? x=1
25] f(x) = &* e a
o 2 14 2er g

ality for x,
b) Inx> -1

27-32 Find the limit.

eJx ) e-—3x 5
27. lim e 28. lime™
2 Sl -3 * 4+ e x—®
2. imet 30. ‘lim ¥
x—2% x—27
31. lim (e”* cos x) 32] i hine et
x>0 x—(m/2)*
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33-48 Differentiate the function.
33, f(x) = (x° + 2x)e” 34, y=—2

1 +x
B5]y=e* 36. y=e"(cosu + cu)
37. f(u) = eV* 38. g(x) = Vx e
B9] F(z) = e'sn¥ 40. f(¢) = sin(e’) + e
41. y = /1 £ De3 42, y= ek«anﬁ

et — e
43— Aoy S

y=e ym

45yl — 46. y = /1 + xe %
celitid

B i
47. y = cos( sz> 48. f(t) = sin®*(e""")

49-50 Find an equation of the tangent line to the curve at the
given point.

49. y = e*cos mx, (0,1) 50) y=e*/x, (1,e)

51 Find y' if e*” = x + y.

52. Find an equation of the tangent line to the curve
xe’ + ye* = 1 at the point (0, 1).

53. Show that the function y = e* + e~ */? satisfies the differen-
tial equation 2y” — y’ — y = 0.

54. Show that the function y = Ae™ + Bxe ™ satisfies the differ-
ential equation y” + 2y’ + y = 0.

55. For what values of r does the function y = ¢’ satisfy the
equation y” + 6y’ + 8y = 0?

56. Find the values of A for which y = e** satisfies the equation
b ok

[57.] If f(x) = e, find a formula for £ (x).

58. Find the thousandth derivative of f(x) = xe™™

59. (a) Use the Intermediate Value Theorem to show that there is
aroot of the equation ¢* + x = 0.
(b) Use Newton’s method to find the root of the equation in
part (a) correct to six decimal places.

A9 60. Use a graph to find an initial approximation (to one decimal
place) to the root of the equation 4 sinx = x* — x + 1.
Then use Newton’s method to find the root correct to eight
decimal places.

61. Under certain circumstances a rumor spreads according to the
equation
1

sckmRmny

where p(?) is the proportion of the population that knows the
rumor at time ¢ and a and k are positive constants. [In Sec-

25 (c) Graph p for the case a = 10, k = 0.5 with ¢

62. For the period from 1980 to 2000, the percentage o

V¥
(1]

72-73 Draw a graph of f that shows all the important

tion 10.4 we will see that this is a reasonable equatj
for p(7).]

(a) Find lim,.. p(z).

. (b) Find the rate of spread of the rumor.

hours. Use the graph to estimate how long it v
80% of the population to hear the rumor.

holds in the United States with at least one VCR
modeled by the function

85

t = e—
i) 1k 53e 92!

where the time ¢ is measured in years since midyear
0 = = 20. Use a graph to estimate the time at whij
number of VCRs was increasing most rapidly. Thy
derivatives to give a more accurate estimate.

63. Find the absolute maximum value of the function
f(x) =x — e~

64. Find the absolute minimum value of the function
glx) =e¥x, x>0,

65-66 Find the absolute maximum and absolute mini

of f on the given interval.

65. f(x) = xe™"%, [-1,4] 66. f(x) = x%

67-68 Find (a) the intervals of increase or decrease, (b)
vals of concavity, and (c) the points of inflection.

x

67. f(x) = (1 — x)e™* 68. f(x) = %

69-70 Discuss the curve using the guidelines of Secti
[69) y= o~ M/t 70. y = e —

71. A drug response curve describes the level of medi
the bloodstream after a drug is administered. A su
function S(f) = AtPe™* is often used to model the:
curve, reflecting an initial surge in the drug leve
more gradual decline. If, for a particular drug, A =
p =4,k =0.07, and ¢ is measured in minutes,
times corresponding to the inflection points and
significance. If you have a graphing device, use
the drug response curve.

the curve. Estimate the local maximum and minimu:
then use calculus to find these values exactly. Use a g
to estimate the inflection points.

72. f(x) = poosx 73. f(x) i e,:‘_
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- pell-shaped curves 91 If f(x) = 3 + x + € find (f~))(4).

1 2 2 sin x
~(x-w)?*/0?) e ] |
Vi € 92. Evaluate lim
o+2m it R

bility and statistics, where it is called the nor-

s ;
tion. The constant y is called the mean and 18- 1 ol shphiue Gunetion

stant o is called the standard deviation. For 1 —elx
scale the function so as to remove the factor f) = 1tk
Jet’s analyze the special case where u = 0.
S ion you’ll see that f appears to be an odd function. Prove it.
() = o7 /0" 94. Graph several members of the family of functions
symptote, maximum value, and inflection points 1
1= 1+ aet

;‘does o play in the shape of the curve?
yy graphing four members of this family on the where a > 0. How does the graph change when & changes?
How does it change when a changes?

e integral. 95. Prove the second law of exponents [see (7)].
76, fl xe " dx 96. Prove the third law of exponents [see (7)].
0
2 97. (a) Show thate* =1+ xif x = 0.
78. f (1t e) e [Hint: Show that f(x) = e* — (1 + x) is increasing
e* for x > 0.]

4 Loilox?
80. [ (4 + e dx (b) Deduce that 2 < [! e”dx < e.

Y 98. (a) Use the inequality of Exercise 97(a) to show that, for
e x=0,
8. | e

e*=1+x+jx?
84. f e*sin(e”) dx (b) Use part (a) to improve the estimate of [} e*'dx given in
Exercise 97(b).

o three decimal places, the area of the region 99. (a) Use mathematical induction to prove that for x = 0 and
e curves y = e*, y = ¢¥ and x = 1. any positive integer n,

x“”(x)=3e"+53inx,f(0)= 1, and f'(0) = 2. S % + + 2
i A
2!

ie of the solid obtained by rotating about the n!
i bounded by the curves y = ¢%,y = 0, x = 0, (b) Use part (a) to show that e > 2.7.
: (c) Use part (a) to show that
e of the solid obtained by rotating about the .
gion bounded by the curves y = ™, y = 0, lim .e_k =
=1, ;o ¥
for any positive integer k.
erf(x) = 2. [x ot I00. This exercise illustrates Exercise 99(c) for the case k = 10.
NERD (a) Compare the rates of growth of f(x) = x'° and g(x) = e*
Obability, statistics, and Sl by by graphing both f and g in several viewing rectangles.
¢ I: R L [erf(d) — erf(a)]. When does the graph of g finally surpass the graph of f?

t the function y = e’zerf(x) silisBes the differ: (b) Find a viewing’ rectangle that shows how the function
tion y’ = 2xy + 2/\/7r. h(x) = e*/x"° behaves for large x.

: (c) Find a number N such that

pulation starts with 400 bacteria and grows at a ;

" (450.268)e" 2™ bacteria per hour. How many : e
. : ?
there be after three hours? if x>N  then = =

> 10%°
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7.4*

GENERAL LOGARITHMIC AND EXPONENTIAL FUNCTIONS

In this section we use the natural exponential and logarithmic functiong to sy
tial and logarithmic functions with base a > 0.

GENERAL EXPONENTIAL FUNCTIONS

If @ > 0 and r is any rational number, then by (4) and (7) in Section 7.3%
ar S (elna)r s erlna

Therefore, even for irrational numbers x, we define

m at = exlna

Thus, for instance,

27 = ¢¥3l2 & 120 ~ 337

The function f(x) = a* is called the exponential function with base a. Noti
positive for all x because e* is positive for all x.

Definition 1 allows us to extend one of the laws of logarithms. We §
In(a") = rIn a when r is rational. But if we now let r be any real number we
Definition 1,

Ina"=In(e"™*) =rlna
Thus

Ina"=rlna for any real number r

The general laws of exponents follow from Definition 1 together with the la
nents for e”*. :

[3] LAWS OF EXPONENTS If x and y are real numbers and @, b > 0, then

lat =a’a’ 2. a7 =aa’ 3. (@) =a> 4. (ab) = a'b

PROOF
I. Using Definition 1 and the laws of exponents for e*, we have

ax+y Ll e(x+y)lna i exlna+y1na

xlna_ylna

= ¢*"% = a*a’
3. Using Equation 2 we obtain
(ax)y e eyln(a") sl eyxlna
xylna

=g *-_—ax)'

The remaining proofs are left as exercises.

v
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The differentiation formula for exponential functions is also a consequence of
Definition 1:

d X x
(4] = (@)=a*lna
d d d
PROOF = @)= = (i e"““-zx— (xIna) =a*lna O

Notice that if a = e, then Ine = 1 and Formula 4 simplifies to a formula that we
already know: (d/dx) e* = e*. In fact, the reason that the natural exponential function is
used more often than other exponential functions is that its differentiation formula is
simpler.

EXAMPLE | In Example 6 in Section 3.7 we considered a population of bacteria cells in
a homogeneous nutrient medium. We showed that if the population doubles every hour,
then the population after ¢ hours is

n = ny2’

where ny is the initial population. Now we can use (4) to compute the growth rate:

d
d_’; =ne2'ln2
For instance, if the initial population is ny = 1000 cells, then the growth rate after two

hours is

dn
T = (1000)2‘In 2 |-
dt i ( ) n Ir 2

= 4000 In 2 =~ 2773 cells/h O

EXAMPLE 2 Combining Formula 4 with the Chain Rule, we have

d 2 2 d 2 2
odray ) = X X = X . D
o (10*) = 10 (In 10) - () = 21 10)x10

EXPONENTIAL GRAPHS

If a > 1, then Ina > 0, so (d/dx) a* = a*In a > 0, which shows that y = a* is increas-
ing (see Figure 1). If 0 < a < 1, thenlna < 0 and so y = a* is decreasing (see Figure 2).

YA >

/ 1 ) 1\'

0 o 0 X

lim ¢*=0, limg*= * lim a*=c, lima*=0
x——00 xX—© 4 x—~— X—®

FIGURE | y=a*, a>1 FIGURE 2 y=4", 0<a<l1
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Notice from Figure 3 that as the base a gets larger, the exponential function ..
rapidly (for x > 0). o

5
1:5%
200
1 100 +
0 1 X 0 D)
FIGURE 3 FIGURE 4 FIGURE 5
Members of the family of
exponential functions Figure 4 shows how the exponential function y = 2* compares with the po
y = x° The graphs intersect three times, but ultimately the exponential ¢
grows far more rapidly than the parabola y = x> (See also Figure 5.)

In Section 7.5 we will show how exponential functions occur in the descrip
ulation growth and radioactive decay. Let’s look at human population grow
shows data for the population of the world in the 20th century and Figure 6 sho

TABLE | responding scatter plot.

Population e
Year (millions)
9= .

1900 1650 i i
1910 1750
1920 1860 i 3
1930 2070 ;
1940 2300 T =
1950 2560 s i Y
1960 3040 L
1970 3710
1980 4120 1900 1920 1940 1960 1980 2000 !
1990 5280
2000 6080

FIGURE 6 Scatter plot for world population growth

The pattern of the data points in Figure 6 suggests exponential growth
graphing calculator with exponential regression capability to apply the m
squares and obtain the exponential model

P = (0.008079266) - (1.013731)"

Figure 7 shows the graph of this exponential function together with the

points. We see that the exponential curve fits the data reasonably well. The:
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tively slow population growth is explained by the two world wars and the Great Depres-
sion of the 1930s.

P
6X10° T
FIGURE 7
nential model foé 1900 1920 1940 190 1980 2000 °
pulation growt

EXPONENTIAL INTEGRALS

The integration formula that follows from Formula 4 is

fa‘dx=z +:C a#1l

2% ]5 5% s iy

5
EXAMPLE 3 2dx = = o, ol
- bhrde=17 W2 W2 2

THE POWER RULE VERSUS THE EXPONENTIAL RULE

Now that we have defined arbitrary powers of numbers, we are in a position to prove the
general version of the Power Rule, as promised in Section 3.3.

THE POWER RULE If n is any real number and f(x) = x", then

') = nx""!
it £(0) = 0 for PROOF Let y = x" and use logarithmic differentiation:
2finition of a derivative.
: In|y|=Mh|x|"=nhn|x|] x#0
Snan
Therefore e
R
! D ‘xn n—1
Hence Y= =N Ny 0
X %

B You should distinguish carefully between the Power Rule [(d/dx) x" = nx""'], where
the base is variable and the exponent is constant, and the rule for differentiating exponen-
tial functions [(d/dx) a* = a*In a], where the base is constant and the exponent is variable.
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In general there are four cases for exponents and bases:

d
5 = (a2) =0 (a and b are constants)
X

2. P = HWP
X o

d
3. —[a*¥] = a*(In a)g'(x)
dx

4. To find (d/dx)[ f(x)]*?, logarithmic differentiation can be used, as in thg
example. :

7 EXAMPLE 4 Differentiate y = xV*.

SOLUTION | Using logarithmic differentiation, we have

1ny=1nxﬂ=\/;lnx

m Figure 8 illustrates Example 4 by showing _X_'_ 5 : i 1
the graphs of f(x) = x** and its derivative. y Vx 3 + (In x) e
Y4

,=’__1_+lnx ol 2 b Ny
Lo )

SOLUTION 2 Another method is to write x¥* = (e™*)¥*:

d d
e Y VI R MO 7 0 1 AR BBV B P
e (x ) o (e ) e _—dx (\/; In x)

: 2+ Inx
FIGURE 8 = x‘/;< ) (as in Solution 1)

| 2%
: GENERAL LOGARITHMIC FUNCTIONS
If a > 0 and a # 1, then f(x) = a*is a one-to-one function. Its inverse functi '
the logarithmic function with base a and is denoted by log,. Thus.
(5] log.x=y < a’=x
Y Gty
Y .X//
In particular, we see that
log.x =1nx
y=ata>1 i : : : . i
/ o The cancellation equations for the inverse functions log,x and a” are
b
/10
g x a'%* = x and log.(a*) = x
/// y=log,x, a>1 : .
7 Figure 9 shows the case where a > 1. (The most important logarithmic
base a > 1.) The fact that y = a” is a very rapidly increasing function:
FIGURE 9 reflected in the fact that y = log_x is a very slowly increasing function for %
Y a y




¢ y=logx

d the sciences, as
ptation In x for the
x for the “common

re and in computer
tion log x usually

advanced mathe-
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Figure 10 shows the graphs of y = log,x with various values of the base a. Since
log,1 = 0, the graphs of all logarithmic functions pass through the point (1, 0).

The laws of logarithms are similar to those for the natural logarithm and can be deduced
from the laws of exponents (see Exercise 65).

The following formula shows that logarithms with any base can be expressed in terms
of the natural logarithm.

[6] CHANGE OF BASE FORMULA For any positive number a (a # 1), we have

log.x = ln_x
Ba Ina

PROOF Lety = log,x. Then, from (5), we have a’ = x. Taking natural logarithms of both
sides of this equation, we get yIna = In x. Therefore

Inx
R )
y Ina

Scientific calculators have a key for natural logarithms, so Formula 6 enables us to use
a calculator to compute a logarithm with any base (as shown in the following example).
Similarly, Formula 6 allows us to graph any logarithmic function on a graphing calculator
or computer (see Exercises 14-16).

EXAMPLE 5 Evaluate logg5 correct to six decimal places.
SOLUTION Formula 6 gives
In5
Lo O
logs5 e 0.773976

Formula 6 enables us to differentiate any logarithmic function. Since In a is a constant,
we can differentiate as follows:

d d (Inx L i
e 5 = e— — =————-—l o
dx (log. ) dx <lna> Ina dx ny xlna

d
7 — (log, x) =
dx (log, x) xlna

I EXAMPLE 6 Using Formula 7 and the Chain Rule, we get

d 1 d

ot sl BT e P

dx logui2 T am 3 (2 + sinx)In 10 dx ( )
COS X

I e e e i
(2 + sinx)In 10

From Formula 7 we see one of the main reasons that natural logarithms (logarithms
with base ¢) are used in calculus: The differentiation formula is simplest when a = e
because Ine = 1.




CHAPTER 7 INVERSE FUNCTIONS

THE NUMBER e AS A LIMIT

We have shown that if f(x) = In x, then f'(x) = 1/x. Thus f'(1) = 1. We now ug
to express the number e as a limit.

From the definition of a derivative as a limit, we have

p) = i FAHRD SO f0 42 = p0)

x—0 X

TG Bl 1
aqp b A=l lim = In(1 + x)
x—0 X X300

= lir% In(1 + x)~

Because f'(1) = 1, we have

liné In(1 + x)'* =1

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

e = el s eliml_.aln(1+x)’/‘ = lim eln(1+x)'/’ = lim (1 3 x)l/x
x—0 x—0
5] e =1lim (1 + x)" |
Xeh0

Formula 8 is illustrated by the graph of the function y = (1 + x)"/* in Figure 11
table of values for small values of x.

Il y r X 1+ x)

: g 0.1 2.59374246°

[ =(1+x)~ 0.01 2.70481383

i 0.001 271692393
——— e 0.0001 2.71814593

| i 0.00001 2.71826824

| 0 0.000001 2.71828047

' 0.0000001 2.71828169

; 71828181

FIGURE 11 0.00000001 2718

If we put n = 1/x in Formula 8, then n — % as x — 0 and $0 an alternativ
for e is

[9] e = lim <1 +—l->n
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equation that defines a* when a is a positive

d x is a real number.

. domain of the function f(x) = a*?

what is the range of this function?

rgeneral shape of the graph of the exponential
each of the following cases.

(i) a=1 (iii) 0<a<1

positive number and @ # 1, how is log, x

the domain of the function f(x) = log, x?
the range of this function?

sketch the general shapes of the graphs of
x and y = a” with a common set of axes.

Xpression as a power of e.

4. 107

6 xcosx

- the expression.

5 (b) logs 2

(b) logs 320 — logs 5
& 02,15 + log,20

— logs;18 — log; 50

(b) 10 (logio 4+1ogi07)

he given functions on a common screen. How are

1a 6 to evaluate each logarithm correct to six deci-

(b) loge 13.54 (c) logo 7

mula 6 to graph the given functions on a common
these graphs related?

y=logix, y=1logsx, y=logsx
s ¥=Inx, y=Ilogpx, y=Ilogsx

¥ = logox, y=¢* y = 10*

17-18 Find the exponential function f(x) = Ca* whose graph is
given.

y 18.
(3,24)

(1,6)

19. (a) Show that if the graphs of f(x) = x? and g(x) = 2% are
drawn on a coordinate grid where the unit of measure-
ment is 1 inch, then at a distance 2 ft to the right of the
origin the height of the graph of f is 48 ft but the height
of the graph of g is about 265 mi.

(b) Suppose that the graph of y = log, x is drawn on a coor-
dinate grid where the unit of measurement is an inch.
How many miles to the right of the origin do we have to
move before the height of the curve reaches 3 ft?

20. Compare the rates of growth of the functions f(x) = x> and
g(x) = 5" by graphing both functions in several viewing rect-
angles. Find all points of intersection of the graphs correct to
one decimal place.

21-24 Find the limit.

21. lim (1.001)* 22. lim (1.001)*
23. lim 2™ 24. lim logio(x* — 5x + 6)

t—>oc

25-42 Differentiate the function.

25. () =1 — 3¢ 26. g(x) = x*4*

27,y =571 28, y= 10=2¢

flw) = (2% + 2710 30, y =2

31. f(x) = loga(1 — 3x) 32. f(x) = logs(xe”)
33. y = 2xlogiovx 34. y = log,(e *cos 7x)
35. y=x" 36, y = x**

37 y = xo 3= \/;x

39. y = (cos x)* 40. y = (sin x)""*

41y = (an)i 42. y=(Qnx)=:

43. Find an equation of the tangent line to the curve y = 10* at
the point (1, 10).
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If f(x) = x**% find f'(x). Check that your answer is reason-
able by comparing the graphs of f and f'.

45-50 Evaluate the integral.

53.

e

56.
57.

58.

59.

60.

52.

55.

f 10° dt 46. f(x5 + 5% dx

ar. | lig;"—xdx 48. [ x27ax

[ 342 cos 0 0. | 2,2; - dx

51. Find the area of the region bounded by the curves y = 2%,

y=5,x=—-1,andx = 1.

The region under the curve y = 10 * from x = Oto x = 1 is
rotated about the x-axis. Find the volume of the resulting
solid.

Use a graph to find the root of the equation 2* = 1 + 37* cor-
rect to one decimal place. Then use this estimate as the initial
approximation in Newton’s method to find the root correct to

six decimal places.

[54] Find Y if x? = y*

1
Find the inverse function of f(x) = logm<1 + —).
%

Calculate lim,_,. x™"*,

The geologist C. F. Richter defined the magnitude of an
earthquake to be log,o(//S), where I is the intensity of the
quake (measured by the amplitude of a seismograph 100 km
from the epicenter) and S is the intensity of a “standard”
earthquake (where the amplitude is only 1 micron = 10~* cm).
The 1989 Loma Prieta earthquake that shook San Francisco
had a magnitude of 7.1 on the Richter scale. The 1906 San
Francisco earthquake was 16 times as intense. What was its
magnitude on the Richter scale?

A sound so faint that it can just be heard has intensity

Io = 107" watt/m” at a frequency of 1000 hertz (Hz). The
loudness, in decibels (dB), of a sound with intensity I is then
defined to be L = 10 log,o(1/I). Amplified rock music is
measured at 120 dB, whereas the noise from a motor-driven
lawn mower is measured at 106 dB. Find the ratio of the
intensity of the rock music to that of the mower.

Referring to Exercise 58, find the rate of change of the loud-
ness wi‘h respect to the intensity when the sound is measured
at 50 dB (the level of ordinary conversation).

According to the Beer-Lambert Law, the light intensity at a

depth of x meters below the surface of the ocean is

I(x) = Lya*, where I, is the light intensity at the surface and a

is a constant such that 0 < a < 1.

(a) Express the rate of change of /(x) with respect to x in
terms of /(x).

A 61.

(b) If Ip = 8 and a = 0.38, find the rate of change
intensity with respect to depth at a depth of 20
(¢) Using the values from part (b), find the ayers
intensity between the surface and a depth of

The flash unit on a camera operates by storing ch
capacitor and releasing it suddenly when the flash
The following data describe the charge Q remai
capacitor (measured in microcoulombs, 1C) at ti
sured in seconds).

t 0.00 0.02 0.04 0.06

100.00 | 81.87 | 67.03 | 54.88

(a) Use a graphing calculator or computer to find
nential model for the charge.
(b) The derivative Q'() represents the electric cu
sured in microamperes, pA) flowing from the
the flash bulb. Use part (a) to estimate the cun
t = 0.04 s. Compare with the result of Examp
Section 2.1.

. The table gives the US population from 1790 to 1

Year

1790
1800
1810
1820

Year
1830
1840
1850
1860

Population
3,929,000
5,308,000
7,240,000
9,639,000

Populal
12,861,
17,063,008
23,192,
31,44300

(a) Use a graphing calculator or computer to fit af
tial function to the data. Graph the data points
exponential model. How good is the fit?

(b) Estimate the rates of population growth in 1
by averaging slopes of secant lines.

(c) Use the exponential model in part (a) to esti
of growth in 1800 and 1850. Compare these
with the ones in part (b).

(d) Use the exponential model to predict the poj
1870. Compare with the actual population o
Can you explain the discrepancy?

63. Prove the second law of exponents [see (3)].

64. Prove the fourth law of exponents [see (3)].

65. Deduce the following laws of logarithms from (
(a) logu(xy) = log, x + log, y
(b) loga(x/y) = log, x — log, y

(c) logu(x?) = ylog, x

66. Show that lim

n—o

(1 +i> = ¢* for any x > 0.
n
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EXPONENTIAL GROWTH AND DECAY

In many natural phenomena, quantities grow or decay at a rate proportional to their size.
For instance, if y = £(¢) is the number of individuals in a population of animals or bacte-
ria at time 7, then it seems reasonable to expect that the rate of growth f() is proportion-
al to the population £(z); that is, f'(t) = kf(¢) for some constant k. Indeed, under ideal
conditions (unlimited environment, adequate nutrition, immunity to disease) the mathe-
matical model given by the equation f'(t) = kf(¢) predicts what actually happens fairly
accurately. Another example occurs in nuclear physics where the mass of a radioactive
substance decays at a rate proportional to the mass. In chemistry, the rate of a unimolecu-
lar first-order reaction is proportional to the concentration of the substance. In finance, the
value of a savings account with continuously compounded interest increases at a rate pro-
portional to that value.

In general, if y(7) is the value of a quantity y at time ¢ and if the rate of change of y with
respect to 7 is proportional to its size y(7) at any time, then

dy
— k
(1] o

where  is a constant. Equation 1 is sometimes called the law of natural growth (if k > 0)
or the law of natural decay (if k < 0). It is called a differential equation because it
involves an unknown function Yy and its derivative dy/dt.

It’s not hard to think of a solution of Equation 1. This equation asks us to find a function
whose derivative is a constant multiple of itself. We have met such functions in this chap-
ter. Any exponential function of the form ¥(t) = Ce*, where Cis a constant, satisfies

V(1) = Clke*) = k(Ce*') = ky(s)

We will see in Section 10.4 that any function that satisfies dy/dt = ky must be of the form
y = Ce". To see the significance of the constant C, we observe that

¥(0) = Ce** = C

Therefore C is the initial value of the function.

THEOREM The only solutions of the differential equation dy/dt = ky are the
exponential functions

¥(2) = y(0)e*

POPULATION GROWTH

What is the significance of the proportionality constant k? In the context of population
growth, where P(t) is the size of a population at time t, we can write

dP 1 ap
— — — k
(] a o Pa
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The quantity
LN
P dt

is the growth rate divided by the population size; it is called the relative gl'owﬂia
According to (3), instead of saying “the growth rate is proportional to population siy
could say “the relative growth rate is constant.” Then (2) says that a population wﬁg
stant relative growth rate must grow exponentially. Notice that the relative growﬂ{
appears as the coefficient of 7 in the exponential function Ce*’. For instance, if

dP
— = 0.02P
dt

and 7 is measured in years, then the relative growth rate is k = 0.02 and the populs
grows at a relative rate of 2% per year. If the population at time 0 is Py, then the cxg
sion for the population is

P(f) = Poe®™

7 EXAMPLE | Use the fact that the world population was 2560 million in 1950 and
3040 million in 1960 to model the population of the world in the second half of the 2
century. (Assume that the growth rate is proportional to the population size.) What is
relative growth rate? Use the model to estimate the world population in 1993 and o'
predict the population in the year 2020.

SOLUTION We measure the time 7 in years and let = 0O in the year 1950. We measure tt
population P(z) in millions of people. Then P(0) = 2560 and P(10) = 3040. Since W
are assuming that dP/dt = kP, Theorem 2 gives

P(1) = P(0)e*" = 2560e*"
P(10) = 2560e'%* = 3040

1 3040
k=—In—
10 2560

~ (0.017185
The relative growth rate is about 1.7% per year and the model is
P(t) = 2560715

We estimate that the world population in 1993 was

P(43) = 2560e°°'7'%3#) =~ 5360 million
The model predicts that the population in 2020 will be

P(70) = 256070 ~ 8524 million
The graph in Figure 1 shows that the model is fairly accurate to the end of the &

tury (the dots represent the actual population), so the estimate for 1993 is quite !
But the prediction for 2020 is riskier. '

v
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6000+

- 0.017185¢
Population Fi= 2o00e

(in millions)

2‘0 40 t
Years since 1950 O

RADIOACTIVE DECAY

Radioactive substances decay by spontaneously emitting radiation. If m(f) is the mass
remaining from an initial mass my of the substance after time ¢, then the relative decay rate

1 dm

m dt

has been found experimentally to be constant. (Since dm/dt is negative, the relative decay
rate is positive.) It follows that
L

= ki
dt "

where k is a negative constant. In other words, radioactive substances decay at a rate pro-
portional to the remaining mass. This means that we can use (2) to show that the mass
decays exponentially:

m(t) = moe*

Physicists express the rate of decay in terms of half-life, the time required for half of
any given quantity to decay.

2 EXAMPLE 2 The half-life of radium-226 is 1590 years.

(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of the
sample that remains after ¢ years.

(b) Find the mass after 1000 years correct to the nearest milligram.

(c) When will the mass be reduced to 30 mg?

SOLUTION
(a) Let m(z) be the mass of radium-226 (in milligrams) that remains after ¢ years. Then
dm/dt = km and y(0) = 100, so (2) gives

m(t) = m(0)e* = 100e*

In order to determine the value of k, we use the fact that y(1590) = 3(100). Thus

100e¥* =50 so "% =;
and 1590k =In3 = —In2
o In2
1590

Therefore m(f) = 100en2/15%
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We could use the fact that ¢""? = 2 to write the expression for m(r) in the altery
form

m(f) = 100 X 271150
(b) The mass after 1000 years is
m(1000) = 100e~021090/15% ~ g5 o
(c) We want to find the value of ¢ such that m(f) = 30, that is,

IOOe—ﬂn 291/1590 — 30 or e—(ln 2)t/1590 0.3

We solve this equation for # by taking the natural logarithm of both sides:
150

In2
= t=1n0.3
1590
= 1006_“" 2)1/1590
Thus t= :
. In2
ot : : N 4000 As a check on our work in Example 2, we use a graphing device to draw the
m(t) in Figure 2 together with the horizontal line m = 30. These curves inters
FIGURE 2 t = 2800, and this agrees with the answer to part (c).

NEWTON’S LAW OF COOLING

Newton’s Law of Cooling states that the rate of cooling of an object is propo
the temperature difference between the object and its surroundings, provided
difference is not too large. (This law also applies to warming.) If we let 7(¢) be
perature of the object at time 7 and T be the temperature of the surroundings,
can formulate Newton’s Law of Cooling as a differential equation:

dr
= k(T —
dt ( L)

where k is a constant. This equation is not quite the same as Equation 1, so %
the change of variable y(t) = T(t) — T,. Because T is constant, we have y'(f)
and so the equation becomes :

dy

=k
a2

We can then use (2) to find an expression for y, from which we can find 7.

EXAMPLE 3 A bottle of soda pop at room temperature (72°F) is placed in a refrige
where the temperature is 44°F. After half an hour the soda pop has cooled to 61°
(a) What is the temperature of the soda pop after another half hour?

(b) How long does it take for the soda pop to cool to 50°F?

SOLUTION
(a) Let T(#) be the temperature of the soda after  minutes. The surrounding t€m§1
is T, = 44°F, so Newton’s Law of Cooling states that

dT
— = k(T - 44
it )
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If we let y = T — 44, then y(0) = T(0) — 44 = 72 — 44 = 28, so y satisfies

dy -
o ky -y(0) =28

and by (2) we have
y(1) = y(0)e" = 28e"

We are given that 7(30) = 61, so y(30) = 61 — 44 = 17 and

17
28e%%* = 17 e =3

Taking logarithms, we have

_ In(x) _
k=2 ~ ~0.01663

Thus
y(t) = 288—0.016631

T(r) = 44 + 280016

T(60) = 44 + 2870 ~ 543

So after another half hour the pop has cooled to about 54°F.
(b) We have T(t) = 50 when

44 + 286-0.016631 = 50

-0.01663r _ 6
e = 8

In()

= Too663 ~ 2®

The pop cools to 50°F after about 1 hour 33 minutes.

Notice that in Example 3, we have

lim T(f) = lim (44 + 28¢7%%'%®") = 44 + 28 - 0 = 44

which is to be expected. The graph of the temperature function is shown in Figure 3.

CONTINUOUSLY COMPOUNDED INTEREST

451

EXAMPLE 4 If $1000 is invested at 6% interest, compounded annually, then after

1 year the investment is worth $1000(1.06) = $1060, after 2 years it’s worth

$[1000(1.06)]1.06 = $1123.60, and after ¢ years it’s worth $1000(1.06)". In general,
if an amount Ay is invested at an interest rate r (r = 0.06 in this example), then after

t years it’s worth A¢(1 + r)". Usually, however, interest is compounded more frequently,
say, n times a year. Then in each compounding period the interest rate is r/n and there

v




452

[l CHAPTER 7 INVERSE FUNCTIONS

are nt compounding periods in ¢ years, so the value of the investment is

A0<1 + L)
n

For instance, after 3 years at 6% interest a $1000 investment will be worth

$1000(1.06)* = $1191.02  with annual compounding
$1000(1.03)° = $1194.05 with semiannual compoundin,
$1000(1.015)'2 = $1195.62  with quarterly compounding

$1000(1.005)* = $1196.68 with monthly compounding

0. 6 365-3
$1000| 1 + 365 = $1197.20 with daily compounding

You can see that the interest paid increases as the number of compounding per
increases. If we let n — o, then we will be compounding the interest continu

the value of the investment will be

r nt r nfr |rt
Alt) =limA 1 + — ) = limAp| {1 + —
n—® n n—w n
n/r |rt
- Ao[lim (1 + l> ]
n—® n
. 1\ |~
=Ay| lim |1 +— (where m = n/r)
m—> m

But the limit in this expression is equal to the number e. (See Equation 7.4.9
So with continuous compounding of interest at interest rate r, the amount afte

A(t) = Age rt

If we differentiate this function, we get

dA
= = rApe" = rA(1)
dt

which says that, with continuous compounding of interest, the rate of increas

investment is proportional to its size.
Returning to the example of $1000 invested for 3 years at 6% interest, W€
with continuous compounding of interest the value of the investment will be

A(3) = $1000e©%* = $1197.22

Notice how close this is to the amount we calculated for daily compounding
But the amount is easier to compute if we use continuous compounding.

v
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of protozoa develops with a constant relative
f 0.7944 per member per day. On day zero the
sists of two members. Find the population size

bitant of human intestines is the bacterium

i. A cell of this bacterium in a nutrient-broth
into two cells every 20 minutes. The initial
F a culture is 60 cells.

ive growth rate.

‘expression for the number of cells after ¢ hours,

umber of cells after 8 hours.

e of growth after 8 hours.

ill the population reach 20,000 cells?

€ initially contains 100 cells and grows at a
al to its size. After an hour the population has

pression for the number of bacteria after

he number of bacteria after 3 hours,
e of growth after 3 hours.
the population reach 10,0007

cu ture grows with constant relative growth rate.

there are 600 bacteria and after 8 hours the
000,

3 initial population.

 expression for the population after ¢ hours.
-number of cells after 5 hours,

1ate of growth after 5 hours.

vill the population reach 200,000?

estimates of the world population, in millions,

0 2000:
T
I 1900 1650

980 1950 2560
1260 2000 6080

onential model and the population figures for
800 to predict the world population in 1900
. Compare with the actual figures.

‘Ponential mode] and the population figures for
1900 to predict the world population in 1950.
‘With the actua] population.

Ponential mode] and the population figures for
1950 to predict the world population in 2000.

With the actua] Population and try to explain the
Ehey.

6. The table gives the population of the United States, in
millions, for the years 1900-2000.

EEN R ey ey
76

1900 1960 179
1910

1920
1930

1940
1950

(a) Use the exponential model and the census figures for
1900 and 1910 to predict the population in 2000.
Compare with the actual figure and try to explain the
discrepancy.

(b) Use the exponential model and the census figures for
1980 and 1990 to predict the population in 2000.
Compare with the actual population. Then use this model
to predict the population in the years 2010 and 2020.

(c) Graph both of the exponential functions in parts (a)
and (b) together with a plot of the actual population.
Are these models reasonable ones?

7. Experiments show that if the chemical reaction
N20s —2NO; + 10,

takes place at 45°C, the rate of reaction of dinitrogen pent-
oxide is proportional to its concentration as follows:

_ d[N,0J]

= 0.0005
o 0.0005[N,0s]

(a) Find an expression for the concentration [N,Os] after
1 seconds if the initial concentration is C: .

(b) How long will the reaction take to reduce the concentra-
tion of N,Os to 90% of its original value?

8. Bismuth-210 has a half-life of 5.0 days.
(a) A sample originally has a mass of 800 mg. Find a formula
for the mass remaining after  days.
(b) Find the mass remaining after 30 days.
(c) When is the mass reduced to 1 mg?
(d) Sketch the graph of the mass function.

The half-life of cesium-137 is 30 years. Suppose we have a
100-mg sample.
(a) Find the mass that remains after 7 years.

(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?

10. A sample of tritium-3 decayed to 94.5% of its original
amount after a year.

(a) What is the half-life of tritium-3?

(b) How long would it take the sample to decay to 20% of its
original amount?

453
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Scientists can determine the age of ancient objects by the
method of radiocarbon dating. The bombardment of the upper
atmosphere by cosmic rays converts nitrogen to a radioactive
isotope of carbon, '*C, with a half-life of about 5730 years.
Vegetation absorbs carbon dioxide through the atmosphere and
animal life assimilates '“C through food chains. When a plant
or animal dies, it stops replacing its carbon and the amount of
14C begins to decrease through radioactive decay. Therefore the
level of radioactivity must also decay exponentially.

A parchment fragment was discovered that had about 74% as
much “C radioactivity as does plant material on the earth
today. Estimate the age of the parchment.

A curve passes through the point (0, 5) and has the property
that the slope of the curve at every point P is twice the
y-coordinate of P. What is the equation of the curve?

A roast turkey is taken from an oven when its temperature has

reached 185°F and is placed on a table in a room where the

temperature is 75°F.

(a) If the temperature of the turkey is 150°F after half an hour,
what is the temperature after 45 minutes?

(b) When will the turkey have cooled to 100°F?

. A thermometer is taken from a room where the temperature is

20°C to the outdoors, where the temperature is 5°C. After one

minute the thermometer reads 12°C.

(a) What will the reading on the thermometer be after one
more minute?

(b) When will the thermometer read 6°C?

. When a cold drink is taken from a refrigerator, its temperature

is 5°C. After 25 minutes in a 20°C room its temperature has
increased to 10°C.

(a) What is the temperature of the drink after 50 minutes?
(b) When will its temperature be 15°C?

)
I
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(a) A cup of coffee has temperature 95°C ang takes
utes to cool to 61°C in a room with temperatyge
Show that the temperature of the coffee after mt

T(r) = 20 + 75¢*

where k = 0.02. _
(b) What is the average temperature of the coffee dm
first half hour?

. The rate of change of atmospheric pressure P With;i

altitude A is proportional to P, provided that the tem
is constant. At 15°C the pressure is 101.3 kPa at seq.
87.14 kPa at h = 1000 m.
(a) What is the pressure at an altitude of 3000 m?
(b) What is the pressure at the top of Mount McKin}

altitude of 6187 m? :

. (a) If $1000 is borrowed at 8% interest, find the amg

due at the end of 3 years if the interest is compd
(i) annually, (ii) quarterly, (iii) monthly, (iv) wee}
(v) daily, (vi) hourly, and (vii) continuously.

(b) Suppose $1000 is borrowed and the interest is ¢o
pounded continuously. If A(f) is the amount due ;
t years, where 0 < ¢t < 3, graph A(r) for each of |
est rates 6%, 8%, and 10% on a common screen.

(a) If $3000 is invested at 5% interest, find the value

investment at the end of 5 years if the interest is«
pounded (i) annually, (ii) semiannually, (iii) mon!
(iv) weekly, (v) daily, and (vi) continuously.

(b) If A() is the amount of the investment at time £fi
case of continuous compounding, write a differen
equation and an initial condition satisfied by At}

20. (a) How long will it take an investment to double in*

the interest rate is 6% compounded continuously’
(b) What is the equivalent annual interest rate?

In this section we apply the ideas of Section 7.1 to find the derivatives of the'
inverse trigonometric functions. We have a slight difficulty in this task: B
trigonometric functions are not one-to-one, they do not have inverse functio
culty is overcome by restricting the domains of these functions so that they

to-one.

You can see from Figure 1 that the sine function y = sin x is not one-t0
Horizontal Line Test). But the function f(x) = sinx, —7/2 < x < /2
(see Figure 2). The inverse function of this restricted sine function f exists 2 .
by sin ! or arcsin. It is called the inverse sine function or the arcsine functi€
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y=sinx

/
/
N
N

FIGURE |

sin x

-

o
MBS
<
%
o
Iy
=

FIGURE 2 y=sinx,—5 <x<

SN

Since the definition of an inverse function says that

=y & fO)=x
we have

[1] sin"'x=y < siny=x and -—

Y

£ <z

Thus, if —1 < x < 1, sin”'x is the number between — /2 and /2 whose sine is x.

EXAMPLE | Evaluate (a) sin'(3) and (b) tan(arcsin ;).

SOLUTION

(a) We have .
sin”'(3) = —

6

because sin(7/6) = 3 and 7/6 lies between — /2 and /2.

(b) Let @ = arcsin 3, so sin § = 3. Then we can draw a right triangle with angle 6 as in
Figure 3 and deduce from the Pythagorean Theorem that the third side has length
V9 — 1 = 24/2. This enables us to read from the triangle that

: 1
tan(arcsm %) =tan 6 = -m O

The cancellation equations for inverse functions become, in this case,

i T T
sin”!(sin x) = x for—?sxs—i-

sin(sin"x) =x for—-1sxs<1

The inverse sine function, sin”!, has domain [—1, 1] and range [—7/2, 7/2], and its
graph, shown in Figure 4, is obtained from that of the restricted sine function (Figure 2)
by reflection about the line y = x.

We know that the sine function f is continuous, so the inverse sine function is also con-
tinuous. We also know from Section 3.4 that the sine function is differentiable, so the
inverse sine function is also differentiable. We could calculate the derivative of sin ™' by the
formula in Theorem 7.1.7, but since we know that sin~! is differentiable, we can just as
easily calculate it by implicit differentiation as follows.
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FIGURE 5

w The graphs of the function f of Example 2 and
its derivative are shown in Figure 5. Notice that
£ is not differentiable at 0 and this is consistent
with the fact that the graph of f’ makes a sud-
den jump at x = 0.

FIGURE 6
y=cosx,0sxsm
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Lety = sin”'x. Thensiny = xand —7/2 < y < /2. Differentiating sin y = 34
itly with respect to x, we obtain

cos EX =1
y dx
d 1
and o AP
dx cosy

Now cos y = 0 since —m/2 <y < /2, 50
cosy = /1 — sin2y = /1 — x?

dy 1 1

Theref — = -
R dx cosy 41 —x?
|
3] d (sin™'x) ! I<x<l1 l
— (sin”'x) = —F— — X '
dx V1 — x? 1

7 EXAMPLE 2 If f(x) = sin~'(x> — 1), find (a) the domain of f, (b) f'(x), and (¢)
domain of f.

SOLUTION
(a) Since the domain of the inverse sine function is [—1, 1], the domain of f is

x|-1sx*-1= 1}={x|0<x*<2}
= {x||x| = v2) = [-v2.V2]
(b) Combining Formula 3 with the Chain Rule, we have
1 L
1 — (x2— 1) dx
1 2x
- 1 =1zt =2%*+ 1) %= V2x? — x*
(¢) The domain of f” is
{x\—1<x2—1<1}={x|0<x2<2} :
= {x]o<[x| < vZ} =(-v2,0) U (0.42)
The inverse cosine function is handled similarly. The restricted cosine

f(x) = cos x, 0 < x < m, is one-to-one (see Figure 6) and so it has an inverse i
denoted by cos ™" or arccos.

Flx)y = (x*—1)

[4] cos'x=y <& cosy=x and O0sysm

The cancellation equations are

[5] cos N(gosx) =x forOsxs<m

cos(cos 'x) =x for—lsx=1




Sin y

s

FIGURE 10
Y=tan"'x = arctan x
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The inverse cosine function, cos™, has domain [—1, 1] and range [0, ] and is a con-
tinuous function whose graph is shown in Figure 7. Its derivative is given by

1

d =
@ E(COS ]x)=—ﬁ -1<x<1

Formula 6 can be proved by the same method as for Formula 3 and is left as Exercise 17.

The tangent function can be made one-to-one by restricting it to the interval
(—m/2, m/2). Thus the inverse tangent function is defined as the inverse of the function
f(x) =tanx, —7/2 < x < m/2, as shown in Figure 8. It is denoted by tan™! or arctan.

T T
tan"'x =y < tany=x and —?<y<?

EXAMPLE 3 Simplify the expression cos(tan'x).

SOLUTION | Let y = tan™'x. Then tan y = x and —7/2 <y < 7/2. We want to find cos y
but, since tan y is known, it is easier to find sec y first:

sec’y = 1 + tan’y = 1 + x?
secy = /1 + x2 (since sec y > 0 for —7/2 < y < 7/2)

1
secy 1+ x2

Thus cos(tan™'x) = cos y =

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier to
use a diagram. If y = tan~'x, then tan Y = x, and we can read from Figure 9 (which
illustrates the case y > 0) that

1

cos(tan™'x) = cos y = ———— |
(o) = cosy = =z ,
The inverse tangent function, tan™' = arctan, has domain R and range (—/2, w/2).

Its graph is shown in Figure 10.

We know that

lim tanx = o and lim tanx = —o
x—>(m/2)~ x——(m/2)*
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b
| | | |
| | | |
| | | |
| | | |
| | | |
—_— t >
| 0 | T | 27 |
} =1 I | I
| | | |
| | | |
| | | |
FIGURE 11

y=secx

and so the lines x = * /2 are vertical asymptotes of the graph of tan. Since the ¢
tan~! is obtained by reflecting the graph of the restricted tangent function aboy 3
y = x, it follows that the lines y = /2 and y = — /2 are horizontal asympto
graph of tan~". This fact is expressed by the following limits:

]
lim tan”'x = —721 lim tan"'x = 2 %
|

x—> x—>—® 2

1
EXAMPLE 4 Evaluate lim arctan( )
x—2% x— 2

SOLUTION Since

—> as x — 27

% — 2

the first equation in (8) gives

lim arctan ! i
im arcta =—
x—2* x =2 2

Since tan is differentiable, tan~! is also differentiable. To find its deriv
y = tan”'x. Then tany = x. Differentiating this latter equation implicitly with
x, we have
dy

secty — =1
Y dx

dy 1 1 1

and so — = = =
dx secyy l+tan’y 1+ x?

-
i .1
= o Y =

The remaining inverse trigonometric functions are not used as frequently an

marized here.

[0 y=csc'x (|x|=1) & cscy=x and y € (0, 7/2] U (m 38
y=secx (x| =1) & secy=x and yE[O,Tr/2)U[7T,3

y = cot”'x (x€ER) <& coty=x and y € (0,

The choice of intervals for y in the definitions of csc”! and sec”' is not.
agreed upon. For instance, some authors use y € [0, m/2) U (m/2, m]in the €
sec”!. [You can see from the graph of the secant function in Figure 11 that both
and the one in (10) will work.] The reason for the choice in (10) is that the di
formulas are simpler (see Exercise 79).




is an alternative
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We collect in Table 11 the differentiation formulas for all of the inverse trigonometric
functions. The proofs of the formulas for the derivatives of csc™!, sec™!, and cot™! are left
as Exercises 19-21.

[E TABLE OF DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

.3 (sin"'x) = - 2 (csc™lx) = — !

dx V1 —x2 dx x+4/x2 — 1
4 (cos™x) = L i(sec"x) —
dx 41— x? dx X4/x2 — 1
d . 1 d . _ 1
T &N =TT

|

Each of these formulas can be combined with the Chain Rule. For instance, if u is a dif-
ferentiable function of x, then

4 (sin”'u) = T and L (tan™'u) = -
dx V1 —u? dx dx 1+ u? dx

1
2 EXAMPLE 5 Differentiate (a) y = pew= and (b) f(x) = x arctan+/x.
X

in
SOLUTION
d d
(a) LA 4 (sin™'x)™" = —(sin""x) > — (sin"'x)
dx x dx
_ 1
(sin™'x)?y/1 — x2
1
(b) flx) = XT\/;)Z (%x_l/z) ol arctan\/;
Vx
20+ T uctany .o

EXAMPLE 6 Prove the identity tan™'x + cot™'x = /2.

SOLUTION Although calculus is not needed to prove this identity, the proof using calculus
is quite simple. If f(x) = tan™'x + cot x, then

1
14+x2 1452

f'x) = =0

for all values of x. Therefore f(x) = C, a constant. To determine the value of C, we put
x = 1. Then

C=f1)=tan'1+cot™' 1 =

N

o w
+—=—
4 2

Thus tan™'x + cot™'x = 7/2. O
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[

SOLUTION If we write

b
I
|

1/4 1/2
f P——l e dx = J ,——— 2sm

1
EXAMPLE 8 Evaluate j —dx.

SOLUTION To make the given integral more like Equation 13 we write

Each of the formulas in Table 11 gives rise to an integration formula. The twg q
ful of these are the following:

EXAMPLE 7 Find LI/A

then the integral resembles Equation 12 and the substitution u = 2x is suggested
gives du = 2 dx, so dx = du/2. When x = 0, u = 0; when x = 7, u = 5. So

[dx

-x2+a2=j 5] & =?j X\
a —2—+l — ] +1
a a

This suggests that we substitute u = x/a. Then du = dx/a, dx = adu, and

d 1 d
ij:a2=?ju?+u1=—ju +1 a

;';!. Thus we have the formula

f—]—\/_‘l_—de =sin"x + C

( 5 dx =tan 'x + C
gt et ]

1
1 — 4x? e

1/4 1 [ 1
) i & b N

1

u ]I/Z
= %[sin"(%) — sin~ 0]
x* + a?

dx 1 dx

——tan w+C

i & One of the main uses of inverse trigono-
E metric functions is that they often arise when
& we integrate rational functions.

a=3:

jx +9

X
EXAMPLE 9 Find j ;
X

SOLUTION We substitute u = x? because then du = 2x dx and we can use Equa

+9dx.

14 1 u 1 #]<x2>
—e—tan"!| =) + C=—tan""| 3
2u+9 23an<3> 6 " \3

v
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/2) (b) cos'(-1)
/3) (b) sec™'2

(b) sin"!(1/y/2)
./3) (b) arccos(—3)

an 10) (b) sin~'(sin(77/3))
in 37/4) (b) cos(arcsin )

8. csc(arccos 3)

10. cos(tan™' 2 + tan™' 3)

[I3] sin(tan~'x)

iph the given functions on the same screen. How are
phs related?

=m/2<x<m/2; y=sinlx; y=x

& —7/2 < x < 7/2; y=tanx; y=x

rmula 6 for the derivative of cos™! by the same
as for Formula 3.

that sin'x + cos™'x = /2.
(a) to prove Formula 6.

. d 2 1

b Y -

d - 1
‘dx(sec x)—m.
L5 1
iEri(csc™ly) = — 3
dx( i X/x% —1

e derivative of the function. Simplify where

24. f(x) = x In(arctan x)
26. g(x) = \/x2 — 1sec”!x
28. F(0) = arcsin +/sin 6

l=%
1 +x

1 = x2 arccos x

e

30. y = arctan

31. y = arctan(cos 6)

32. y=tan"'(x — m)

33. h(t) = cot™Y(r) + cot™(1/1)

34, y= tan"‘<£> + In
a

+ acosx

X—a

x+a

b
35. y = arccos

5 O$x$77',a>b>0
a+bcosx>

36-37 Find the derivative of the function. Find the domains of
the function and its derivative.

36. f(x) = arcsin(e*) 9(x) = cos™'(3 — 2x)

38. Find y' if tan"'(xy) = 1 + x%y.
39. If g(x) = xsin™'(x/4) + /16 = x?, find ¢'(2).

40. Find an equation of the tangent line to the curve
y = 3 arccos(x/2) at the point (1, m).
41-42 Find f'(x). Check that your answer is reasonable by com-
paring the graphs of f and F
4l. f(x) = /1 — x2 arcsin x 42. f(x) = arctan(x? — x)
B e

43-46 Find the limit.

s . 1+ x?
43. lim sin~'x 44. lim arccos ——
FS=0F x> 1+ 2x

46. lir(1)1+ tan~'(In x)

lim arctan(e*)
x—>®

Where should the point P be chosen on the line segment AB .
SO as to maximize the angle 67

B
]VP (4
3
A 5

48. A painting in an art gallery has height 4 and is hung so that
its lower edge is a distance d above the eye of an observer (as
in the figure on page 462). How far from the wall should the
observer stand to get the best view? (In other words, where
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should the observer stand so as to maximize the angle 6 sub-
tended at her eye by the painting?)

er

t2
61. | =i 6s. | T

dx
h . B X
69.jﬁ(1+x) 70. fl+x“d"
[ }d

T

71. Use the method of Example 8 to show that, if g >

49. A ladder 10 ft long leans against a vertical wall. If the bottom

of the ladder slides away from the base of the wall at a speed f \/ﬁ dx = sin 1( ) +C
of 2 ft/s, how fast is the angle between the ladder and the arTx

wall changing when the bottom of the ladder is 6 ft from the 72. The region under the curve y = 1/ /x* + 4 frops

. x
base of the wall? x = 2 is rotated about the x-axis. Find the volume
resulting solid.

! 50. A lighthouse is located on a small island, 3 km away from the
nearest point P on a straight shoreline, and its light makes 73

. . A ; . Evaluate fo sin”'x dx by interpreting it as an area an
! four ‘revolutlons per mm.ute. How fa§t is the beam of light grating with respect to y instead of x.
moving along the shoreline when it is 1 km from P?

74. Prove that, for xy # 1,

51-54 Sketch the curve using the guidelines of Section 4.5. M
» -1 arctan x + arctan y = arctan lx
51. y =sin"’
x+1

- Xy
53. y=x—tan"'x

X
52. y =tan”’
- (25

if the left side lies between —r/2 and /2.

54. y = tan”'(In x)
75. Use the result of Exercise 74 to prove the followin
(a) arctan 3 + arctan s = 7/4

(b) 2 arctan3 + arctan 5 = 7/4

[(As]55. If f(x) = arctan(cos(3 arcsin x)), use the graphs of f, f', and
f" to estimate the x-coordinates of the maximum and mini- 76. (a) Sketch the graph of the function f(x) = sin(sin™%
mum points and inflection points of f. (b) Sketch the graph of the function g(x) = sin™'(sin

56. Investigate the family of curves given by f(x) = x — ¢ sin"'x. x€R.

What happens to the number of maxima and minima as ¢
changes? Graph several members of the family to illustrate
what you discover.

COos x

(c) Show that g'(x) =
|cos x|

(d) Sketch the graph of h(x) = cos™'(sin x), x € R

ts d ti
57. Find the most general antiderivative of the function ita desivative, 4
2 & 77. Use the method of Example 6 to prove the identity =
x*

fx) =

2 sin"'x = cos™'(1 — 2x?) x=0

58. Find f(x) if f'(x) = 4/4/1 — x* and f(%) = 78. Prove the identity

. =1
arcsin
b ol |

- J% =
59-70 Evaluate the integral. = 2 arctan )

AR 60. f tan”'x 79. Some authors define y = sec”'x <> secy =X
- 2 . .
2 V1=t y € [0, m/2) U (m/2, w). Show that with this de
6l jﬁM dx o j dt we have (instead of the formula given in Exercise
"o 141627 TV -4 d 1 ME
£ SR . S ¥
1+x sin x dx(sec x) |x|\/x2_—_1
[63] f 64 J-”/z —————dX
1 + cos’x 80. Let f(x) = x arctan(1/x) if x # 0 and f(0) = 0.

(a) Is f continuous at 0?
(b) Is f differentiable at 07

65 j—‘ix—- 66 j—l—dx
/1 = x?sin'x ") xJ/x— 4
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s] WHERE TO SIT AT THE MOVIES

A movie theater has a screen that is positioned 10 ft off the floor and is 25 ft high. The first row
of seats is placed 9 ft from the screen and the-rows are set 3 ft apart. The floor of the seating area
is inclined at an angle of & = 20° above the horizontal and the distance up the incline that you sit
is x. The theater has 21 rows of seats, so 0 < x < 60. Suppose you decide that the best place to
sit is in the row where the angle 6 subtended by the screen at your eyes is a maximum. Let’s also
suppose that your eyes are 4 ft above the floor, as shown in the figure. (In Exercise 48 in Sec-
tion 7.6 we looked at a simpler version of this problem, where the floor is horizontal, but this
project involves a more complicated situation and requires technology.)

I. Show that
A Rl a’+ b* - 625
2ab
where a’>= (9 + xcos a)® + (31 — x sin @)
and b? = (9 + xcos @)* + (xsin & — 6)?

2. Use a graph of 6 as a function of x to estimate the value of x that maximizes 6. In which row
should you sit? What is the viewing angle 6 in this row?

3. Use your computer algebra system to differentiate 6 and find a numerical value for the root
of the equation d6/dx = 0. Does this value confirm your result in Problem 2?

4. Use the graph of 6 to estimate the average value of 6 on the interval 0 < x < 60. Then use

your CAS to compute the average value. Compare with the maximum and minimum values
of 6.

¥ )

HYPERBOLIC FUNCTIONS

Certain even and odd combinations of the exponential functions e* and e* arise so fre-
quently in mathematics and its applications that they deserve to be given special names.
In many ways they are analogous to the trigonometric functions, and they have the same
relationship to the hyperbola that the trigonometric functions have to the circle. For this
reason they are collectively called hyperbolic functions and individually called hyperbolic
sine, hyperbolic cosine, and so on.

DEFINITION OF THE HYPERBOLIC FUNCTIONS
et —.e* 1
sinh x = ——— csch x =
2 sinh x
et g > 1
cosh x = ——— sech x =
2 cosh x
inh cosh x
tanh x = SIh X coth x = —
cosh x sinh x
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FIGURE 1|
) = Qi -1 x | Lp—
y=sinhx= je*— e

FIGURE 4

A catenary y=c + ¢ cosh(x/a)

FIGURE 5
Idealized ocean wave

CHAPTER 7 INVERSE FUNCTIONS

The graphs of hyperbolic sine and cosine can be sketched using graphical adq
in Figures 1 and 2.

y=coshx\ y
____________ Y=
Pt
1 0
y=se’
y=3
0 X
FIGURE 2 FIGURE 3
y=c0shx=—;e‘+%e"‘ y=tanhx

Note that sinh has domain R and range R, while cosh has domain R and rang
The graph of tanh is shown in Figure 3. It has the horizontal asymptotes y = *
Exercise 23.)

Some of the mathematical uses of hyperbolic functions will be seen in Ch
Applications to science and engineering occur whenever an entity such as light,
electricity, or radioactivity is gradually absorbed or extinguished, for the decay can
resented by hyperbolic functions. The most famous application is the use of hyy
cosine to describe the shape of a hanging wire. It can be proved that if a heavy
cable (such as a telephone or power line) is suspended between two points at th
height, then it takes the shape of a curve with equation y = ¢ + a cosh(x/a) called
nary (see Figure 4). (The Latin word catena means “chain.”)

Another application of hyperbolic functions occurs in the description of ocean
The velocity of a water wave with length L moving across a body of water with de

modeled by the function
gL 2md
= 4 /= tanh| —
v . an < 3 )

where g is the acceleration due to gravity. (See Figure 5 and Exercise 49.)

The hyperbolic functions satisfy a number of identities that are similar to welk
trigonometric identities. We list some of them here and leave most of the proof§
exercises. :

HYPERBOLIC IDENTITIES
sinh(—x) = —sinh x cosh(—x) = cosh x
cosh*x — sinh*x = 1 1 — tanh®x = sech’x
sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y




perbolic cosine function

P(cost,sint)

P(cosh t, sinh 1)
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7 EXAMPLE | Prove (a) cosh®x — sinh’x = 1 and (b) 1 — tanh®*x = sech®x.

SOLUTION
ex+e—x' 2 ex_e—x 92
a cosh®x — sinh*x = -
ek % & ez"—2+e_2"_4_1
4 4 4
(b) We start with the identity proved in part (a):
cosh?x — sinh’x = 1
If we divide both sides by cosh’x, we get
sinh%x 1
1 - 2. 2
cosh’x coshx
or 1 — tanh?x = sech’s |

The identity proved in Example 1(a) gives a clue to the reason for the name “hyper-
bolic” functions:

If ¢ is any real number, then the point P(cos ¢, sin 7) lies on the unit circle x> + y? = 1
because cos’t + sin’s = 1. In fact, ¢ can be interpreted as the radian measure of ZPOQ
in Figure 6. For this reason the trigonometric functions are sometimes called circular
functions.

Likewise, if 7 is any real number, then the point P(cosh ¢, sinh ¢) lies on the right branch
of the hyperbola x> — y? = 1 because cosh’t — sinh’ = 1 and cosh ¢ = 1. This time, ¢
does not represent the measure of an angle. However, it turns out that ¢ represents twice
the area of the shaded hyperbolic sector in Figure 7, just as in the trigonometric case ¢ rep-
resents twice the area of the shaded circular sector in Figure 6.

The derivatives of the hyperbolic functions are easily computed. For example,

d d X X X4 oe*
;(sinhx)=a<e 26 >=e 2e = cosh x

We list the differentiation formulas for the hyperbolic functions as Table 1. The remaining
proofs are left as exercises. Note the analogy with the differentiation formulas for trigono-
metric functions, but beware that the signs are different in some cases.

[1] DERIVATIVES OF HYPERBOLIC FUNCTIONS

d d

— (sinh x) = cosh x — (csch x) = —csch x coth x
dx dx

d ) d
— (cosh x) = sinh x — (sech x) = —sech x tanh x
dx dx

d
2L (tanh x) = sech®x — (coth x) = —csch’x
dx dx:
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FIGURE 8 y=sinh'x
domain=R range =R

= Formula 3 is proved in Example 3. The
proofs of Formulas 4 and 5 are requested in

Exercises 26 and 27.

7 EXAMPLE 2 Any of these differentiation rules can be combined with the Cham
For instance,

(cosh % ) = sinh /x - \/_ Slgli/\—/—

INVERSE HYPERBOLIC FUNCTIONS

You can see from Figures 1 and 3 that sinh and tanh are one-to-one functions and's
have inverse functions denoted by sinh™' and tanh™". Figure 2 shows that cosh is n
to-one, but when restricted to the domain [0, «) it becomes one-to-one. The inve
bolic cosine function is defined as the inverse of this restricted function.

y=sinh™'x < sinhy=x
y=cosh™'x <> coshy=x and y=0

y=tanh™'x <= tanhy=1x

The remaining inverse hyperbolic functions are defined similarly (see Exercise 28)
We can sketch the graphs of sinh™!, cosh™’, and tanh™" in Figures 8, 9, and 10 by
Figures 1, 2, and 3. :

a
|
7 | |
| |
| [
Lo/
-1 |1
: | |
of 1 x | |
| |
| |
| |
FIGURE 9 y=cosh™'x FIGURE 10 y=tanh'x
domain = [1,) range = [0, ©) domain = (—1,1) range=R

Since the hyperbolic functions are defined in terms of exponential function:
surprising to learn that the inverse hyperbolic functions can be expressed in terms
arithms. In particular, we have:

sinh™x=In(x + Vx2+1) x€R
[4] coshx=In(x + V32— 1) =x=>1
1+
] tanh-'x=§1n<1 x) ~1<x<1
- X

EXAMPLE 3 Show that sinh™'x = In(x + /x> + 1).

SOLUTION Let y = sinh™'x. Then
e}’ S e—y

x =sinhy = 2



 formulas for the derivatives of
~Lx appear to be identical. But
ese functions have no numbers
is defined for | x| < 1,
defined for | x| > 1.
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S0 e —2x—-e?=0
or, multiplying by e”,
e” —2xe’ — 1 =0
This is really a quadratic equation in e”:
()P —2x(e*) —1=0

Solving by the quadratic formula, we get

* J4x? +
ey=2x ;x 4 =x*tJx2+1

Note that e’ > 0, but x — \/x2 + 1 < 0 (because x < 4/x?2+ 1). Thus the minus sign is
inadmissible and we have

e =x+ x2 + 1
Therefore y =In(e’) = ln(x + /x2+ 1)
(See Exercise 25 for another method.) O
@ DERIVATIVES OF INVERSE HYPERBOLIC FUNCTIONS
d 1 d 1
— (sinh7 %) = —n— — h™lx) = ——F—
dx (sinh”'x) V1 + x2 dx el [x|v/x2+ 1
d - 1 d B 1
E (COSh lx) = T—l E (sech ‘x) = xm
d d 1
—— (tanh™'x) = —— (coth~lx) =
dx ™) - x? dx eotris) 1 — x?

The inverse hyperbolic functions are all differentiable because the hyperbolic functions

are differentiable. The formulas in Table 6 can be proved either by the method for inverse
functions or by differentiating Formulas 3,4, and 5.

d
P that — (sinh™'x) = ———,
2 EXAMPLE 4 Prove tha I (sinh~'x) T

SOLUTION | Let y = sinh™'x. Then sinh ¥ = x. If we differentiate this equation implicitly
with respect to x, we get

d
coshyd—y=1
x

Since cosh?y — sinh’y = 1 and cosh y = 0, we have coshy = /1 + sinh?y, so

dy 1 1 1

dx  coshy - V1 + sinh?y - V1 + x?
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S0LUTION 2 From Equation 3 (proved in Example 3), we have

A (sinh™'x) = :id—ln(x +/x2+ 1)
-dx

dx
a

1
L S /y2
)c+\/)c2+1dx(x+ x+1)

1 X
= 1+
x+\/;c2+l< \/x7+1>
x2+1+x
(x + a2+ 1)y/x2 + 1
1

N

d
7 EXAMPLE 5 Findd—[tanh“(sin x)].
X

SOLUTION Using Table 6 and the Chain Rule, we have

d T 1 .
T [tanh™'(sin x)] = m T (sin x)
1 COS X
= == C0S.X = 5~ = SeCXx
1 — sin“x Ccos“x

i 1 dx
i EXAMPLE 6 Evaluat j —_——
,’, V] valuate | m

SOLUTION Using Table 6 (or Example 4) we know that an antiderivative of 1/4/1
sinh~'x. Therefore

jl ___dx = sinh“x]:)

0 /1 + x2
= sinh™' 1

= ln(l ot \/—2_) (from Equation 3)

7.7 | EXERCISES

1-6 Find the numerical value of each expression. 7-19 Prove the identity.
I. (a) sinh 0 (b) cosh 0 7. sinh(—x) = —sinh x
(This shows that sinh is an odd function.)
2. (a) tanh O (b) tanh 1
8. cosh(—x) = cosh x
3. (a) sinh(In 2) (b) sinh 2 (This shows that cosh is an even function.)
4. (a) cosh 3 (b) cosh(ln 3) cosh x + sinh x = e*
= 10. coshx — sinhx =¢™*
5. (a) sech0 (b) cosh™ 1 )
11. sinh(x + y) = sinh x coshy + cosh x sinh y
6. (a) sinh 1 (b) sinh™"'1 :

12. cosh’(x + y) = cosh x cosh y + sinh x sinh y




j.cschzx
tanh x + tanh y
e 1 + tanh x tanhy

h x cosh x

2 + sinh’

'%, find the values of the other hyperbolic

=2and x > 0, find the values of the other
functions at x.

graphs of sinh, cosh, and tanh in Figures 1-3 to
graphs of csch, sech, and coth.

the graphs that you sketched in part (a) by using a
g device to produce them.

efinitions of the hyperbolic functions to find each of

(b) _lir{l tanh x
(d) ‘lirzl sinh x
(f) lim coth x

(h) lirgg coth x

e formulas given in Table 1 for the derivatives of the
s (a) cosh, (b) tanh, (c) csch, (d) sech, and (e) coth.

alternative solution to Example 3 by letting
~'x and then using Exercise 9 and Example 1(a)
placed by y.

Equation 4.

Equation 5 using (a) the method of Example 3 and
1se 18 with x replaced by y.

v of th.e following functions (i) give a definition like
in (2), (ii) sketch the graph, and (iii) find a formula sim-
Equation 3.

(b) sech™ (c) coth™

formulas given in Table 6 for the derivatives of the
g functions.

(b) tanh™!
(e) coth™!

(c) csch™!

SECTION 7.7 HYPERBOLIC FUNCTIONS |||| 469

30-47 Find the derivative. Simplify where possible.
30. f(x) = tanh(1 + %) 31. f(x) = xsinh x — cosh x
33. A(x) = In(cosh x)

B5J y= gcoshx

37. f(t) = sech®(e’)

32. g(x) = cosh(In x)
34. y = xcoth(1 + x?)
36. f(t) = cscht(1 — Incsch )

38. y = sinh(cosh x) 39. y = arctan(tanh x)

1 + tanh x
0= T
42, y = x?sinh™!(2x)
44. y = xtanh 'x + In /1 — x?
y = xsinh (x/3) — V9 + x?
46. y =sech'y/1 —x2, x>0
47. y = coth™'Vx2 + 1

1 — coshx

41. =
G 1 + coshx

43. y = tanh '\/x

48. The Gateway Arch in St. Louis was designed by Eero Saarinen
and was constructed using the equation

y = 211.49 — 20.96 cosh 0.03291765x

for the central curve of the arch, where x and y are measured
in meters and | x| < 91.20.

(a) Graph the central curve.

(b) What is the height of the arch at its center?

(c) At what points is the height 100 m?

(d) What is the slope of the arch at the points in part (c)?

Y
KK

49. If a water wave with length L moves with velocity v in a body
of water with depth d, then

gmh@rz)
2 L

=

where g is the acceleration due to gravity. (See Figure 5.)
Explain why the approximation

gL
v = =
2

is appropriate in deep water.

. A flexible cable always hangs in the shape of a catenary
= ¢ + a cosh(x/a), where c and a are constants and a > 0
(see Figure 4 and Exercise 52). Graph several members of the
family of functions y = a cosh(x/a). How does the graph
change as a varies?

[5L.] A telephone line hangs between two poles 14 m apart in the
shape of the catenary y = 20 cosh(x/20) — 15, where x and
y are measured in meters. (See the diagram on page 470.)
(a) Find the slope of this curve where it meets the right pole.

v
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(b) Find the angle 6 between the line and the pole.

,,..,.
i f—
%V

52. Using principles from physics it can be shown that when a
cable is hung between two poles, it takes the shape of a curve
y = f(x) that satisfies the differential equation

dZ d 2
Iy _p |y (2
dx T dx

where p is the linear density of the cable, g is the acceleration
due to gravity, and T is the tension in the cable at its lowest
point, and the coordinate system is chosen appropriately.
Verify that the function

y=f(x) = L cosh(fﬂ>
pg T

is a solution of this differential equation.

(a) Show that any function of the form
y = A sinh mx + B cosh mx
satisfies the differential equation y” = m’y.

(b) Find y = y(x) such that y" = 9y, y(0) = —4,
and y'(0) = 6.

sinh x

ex

54. Evaluate lim

55. At what point of the curve y = cosh x does the tangent have
slope 1?

56. If x = In(sec 9 + tan 6), show that sec 6 = cosh x,

57-65 Evaluate the integral.

57. j sinh x cosh®x dx

j sin;;ﬁ dx

j cosh x

6l. dx

cosh’x — 1

6. [(——m—d
.L —

65.J. B iy

1—e*

58. j sinh(1 + 4x) g
60. j tanh x dx

sech’x
62. | ———— 4
j 2 + tanh x d{

1 1
64, | ———
JO V1612 4+ 1

66. Estimate the value of the number ¢ such that the area
curve y = sinh cx between x = 0 and x = 1 is equal

67. (a) Use Newton’s method or a graphing device to fi

mate solutions of the equation cosh 2x = 1 + i

(b) Estimate the area of the region bounded by the ¢
y=cosh2xandy =1+ sinh x.

68. Show that the area of the shaded hyperbolic sector in ¥
is A(f) = 3. [Hint: First show that

A(f) = 3 sinh ¢ cosh t — j‘mh' JxE - 1dx

and then verify that A'(r) = %]

69. Show that if @ # 0 and b # 0, then there exist num
and B such that ae* + be™* equals either a sinh(x +
a cosh(x + B). In other words, almost every functiol
form f(x) = ae* + be™* is a shifted and stretched h

sine or cosine function.

78| INDETERMINATE FORMS AND L’HOSPITAL'S RULE

Suppose we are trying to analyze the behavior of the function

Although F is not defined when x = 1, we need to know how F behaves near

In x

F(x)=x—1

ular, we would like to know the value of the limit

[

v . Inx
lim
x=>1 X —
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In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the quo-
tient of the limits, see Section 2.3) because the limit of the denominator is 0. In fact,
although the limit in (1) exists, its value is not obvious because both numerator and denom-
inator approach 0 and J is not defined.

In general, if we have a limit of the form

. f)
eh g(x)

where both f(x) — 0 and g(x) — 0 as x — a, then this limit may or may not exist and is
called an indeterminate form of type 5. We met some limits of this type in Chapter 2. For
rational functions, we can cancel common factors:

fim 5% — iy~ XE = 1) lim —>
1 —3 —3 —
=1xP =1 =1 (x4 1)(x — 1) x=>1x+1

1
2
We used a geometric argument to show that

sin x

lim
x—0 X
But these methods do not work for limits such as (1), so in this section we introduce a Sys-
tematic method, known as I’Hospital’s Rule, for the evaluation of indeterminate forms.

Another situation in which a limit is not obvious occurs when we look for a horizontal
asymptote of F and need to evaluate its limit at infinity:

In x

xh—{lolox—]

Itisn’t obvious how to evaluate this limit because both numerator and denominator become
large as x — . There is a struggle between numerator and denominator. If the numerator
wins, the limit will be o; if the denominator wins, the answer will be 0. Or there may be
some compromise, in which case the answer may be some finite positive number.

In general, if we have a limit of the form

lim f&)
i—~a g(x)

where both f(x) — o (or —o) and g(x) — o (or —0), then the limit may or may not exist
and is called an indeterminate form of type /. We saw in Section 4.4 that this type of
limit can be evaluated for certain functions, including rational functions, by dividing
numerator and denominator by the highest power of x that occurs in the denominator. For
instance,

1
1.__
" x"—l_], xz_l—O_i
e e 1 240 2
2+—2

TR

This method does not work for limits such as (2), but I’Hospital’s Rule also applies to this
type of indeterminate form.

v
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|
—\
[LHOSPITAL 1 L’HOSPITAL’S RULE  Suppose fand g are differentiable and g'(x) # 0 on ap op
L'Hospital’s Rule is named after a French noble- interval / that contains a (except possibly at a). Suppose that
man, the Marquis de I'Hospital (1661-1704), ) )
but was discovered by a Swiss mathematician, lim f(x) = 0 and limg(x) =0
John Bernoulli (1667-1748). You might sometimes e roa
see |'Hospital spelled as 'Hpital, but he spelled . _ . -
his own name I'Hospital, as was common in the or that }I_I}}, flx) = xeo and P_I,Ii glx) = e
17th century. See Exercise 80 for the example that ) ) o
the Marquis used to illustrate his rule. See the (In other words, we have an indeterminate form of type g or /,) Thep
project on page 481 for further historical details.
) f(x)
lim = lim —
x—a g(x) x—a g (x)
if the limit on the right side exists (or is o or —m),
)‘T s NOTE || L'Hospital’s Rule says that the limit of a quotient of functions ig equ
limit of the quotient of their derivatives, provided that the given conditions are sat
g is especially important to verify the conditions regarding the limits of f and g befe
I’Hospital’s Rule.
0 / a o NOTE 2| L’Hospital’s Rule is also valid for one-sided limits and for limits at ip

negative infinity; that is, “x — a” can be replaced by any of the symbols x — at
X —> ™, or x —> —00,

4 y=mx—a)
For the special case in which f(a) = g(a) = 0, f' and ¢’ are continuc

g'(a) # 0, it is easy to see why I’Hospital’s Rule is true. In fact, using the alternati
y=myx —a) of the definition of a derivative, we have

0 a e
| : L 1) = /@ &) ~ £
FIGURE | lim f'x) _ fa) =i Tl P T8
=a g'(x)  g'a) lim %) — 9@ x=a g(x) — gla)
w Figure 1 suggests visually why I'Hospital’s x—a XxX—a XxX—a
Rule might be true. The first graph shows two
differentiable functions fand g, each of which_ . f(x) — fla) L fW
approaches 0 as x — a. If we were to zoom in =4 ( ) — ( ) = ll)n ( )
toward the point (a, 0), the graphs would start ¥=e gl gla e g\
to look almost linear. But if the functi Il » . ; i : ; :
V(;;: linan:OZs :giz; Szégn;hgra‘;?]m:sgz f;;lljra : The general version of 1'Hospital’s Rule for the indeterminate form vis somew}g
tatiowaild ke ' difficult and its proof is deferred to the end of this section. The proof for the indetet
mlx—a) m form oo/ can be found in more advanced books.
m(x—a) m
nx

which is the ratio of their derivatives. This sug- 2 EXAMPLE | Find lim ;
gests that 5 2+l & — |

; L) SOLUTION Since

Im ~——= = lim - . .

e g(x) e g'(x) limlnx=1In1=0 and lim(x—1)=0

x—1

we can apply I’Hospital’s Rule:

[@ Notice that when using I'Hospital’s Rule we
differentiate the numerator and denominator lim = lim =lim— =lim— =1
separately. We do not use the Quotient Rule. =1 x = 1] =1 d :




ion of Example 2 is
have noticed previously
s grow far more rapidly
‘o the result of Example 2
s also Exercise 93.

10

have discussed previously
arithms, s it isn't surpris-
ches 0 as x — . See

10,000
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x

o
EXAMPLE 2 Calculate lim =
x—®o X

SOLUTION We have lim, .. e* = % and lim,_... x> = ®, so I’Hospital’s Rule gives

d

x (ex) X
. e . dx .
lim — = lim = lim
x—>® X x—o (x2) x—o 2x
dx

Since e* — o« and 2x — % as x — ®, the limit on the right side is also indeterminate
but a second application of 1’'Hospital’s Rule gives

’

In
[2 EXAMPLE 3 Calculate lim —w.

x—0o o/ x

SOLUTION Since In x — o0 and \3/; — % as x — =, "Hospital’s Rule applies:

. Imx 1/x
llm? = llmm
xow 3 x

xX—0 X
Notice that the limit on the right side is now indeterminate of type §. But instead of
applying I’Hospital’s Rule a second time as we did in Example 2, we simplify the
expression and see that a second application is unnecessary:

1 1 3
tim 5 = lim L5~ lim 2 = 0 -

tan x
EXAMPLE 4 Find lim ————. (See Exercise 38 in Section 2.2.
x— X

SOLUTION Noting that both tan x — x — 0 and x° — 0 as x — 0, we use 1’Hospital’s Rule:

5 fanx — x
lim — 3 = lm >
x—0 b & x—0 3x

sectx — 1

Since the limit on the right side is still indeterminate of type g, we apply 1’'Hospital’s
Rule again:

. osectx — 1 2 secx tan x
lim ————— = ljm X 0%
x—0 3x x—0 6_x

Because lim, .o sec’x = 1, we simplify the calculation b writin
plity y g

2sec’xtanx 1 » .. tanx 1
lim ————— = — lim sec’x lim = — lim
x—0 6x 3 x>0 x=>0 X 3 x>0 x

tan x

We can evaluate this last limit either by using I’'Hospital’s Rule a third time or by
writing tan x as (sin x)/(cos x) and making use of our knowledge of trigonometric limits.

473
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& The graph in Figure 4 gives visual confirma- Putting together all the steps, we get
tion of the result of Example 4. If we were to
zoom in too far, however, we would get an tanx — x secx — 1 2 sec?x tan x
inaccurate graph because tan x is close to x lim 3 = lim s— = lim
x—0 X x—0 3x x—0 6x

when x is small. See Exercise 38(d) in

Section 2.2. ,
1 I tan x 1 secx 1
= — lim = — lim = —
. 3550 x 310 |1 3
sin x
EXAMPLE 5 Find lim ———.
s—»m— 1 — cos x
SOLUTION If we blindly attempted to use 1’Hospital’s Rule, we would get
_1 .
0 . sin x . cos
llm_~1_—=hm_ = x-_——oo
FIGURE 4 x> COS X  x—7- §in X

This is wrong! Although the numerator sin x — 0 as x — 7™, notice that the deng
nator (1 — cos x) does not approach 0, so I'Hospital’s Rule can’t be applied here,
The required limit is, in fact, easy to find because the function is continuous at
the denominator is nonzero there:
sin x sin 7 0

I = = =0
xﬂ*l—cosx l=cosar 1= (=1)

, Example 5 shows what can go wrong if you use I’'Hospital’s Rule without th
Other limits can be found using 1"Hospital’s Rule but are more easily found by other
ods. (See Examples 3 and 5 in Section 2.3, Example 3 in Section 4.4, and the dis¢
at the beginning of this section.) So when evaluating any limit, you should con51de
methods before using 1’Hospital’s Rule.

INDETERMINATE PRODUCTS

If lim,—,f(x) = 0 and lim,-, g(x) = ® (or —®), then it isn’t clear what the%
lim,—q f(x)g(x), if any, will be. There is a struggle between f and g. If f wins, the
will be 0; if g wins, the answer will be % (or —). Or there may be a compromi
the answer is a finite nonzero number. This kind of limit is called an indetermin
of type 0 - o. We can deal with it by writing the product fg as a quotient:

® Figure 5 shows the graph of the function in
Example 6. Notice that the function is undefined
i i at x = 0; the graph approaches the origin but
i never quite reaches it. f
| fo=7—- o fg=—7
i /g 1#

This converts the given limit into an indeterminate form of type § or oo/ so i
use 1’Hospital’s Rule.

y=xlnx

i1 EXAMPLE 6 Evaluate hm x1n x.

x—0

SOLUTION The given limit is indeterminate because, as x — 07, the first factor (x)
approaches 0 while the second factor (In x) approaches —oo. Writing x = 1/(
0 1 have 1/x — o« as x — 0%, so I’'Hospital’s Rule gives

*Inx 1/x
= im ——— = | =0
FIGURE 5 hm iy xlirgl’f /x leIgl* —l/x xggl“f( %
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In solving Example 6 another possible option would have been to write

lim xInx = Ji
s Yy

use of I'Hospital’s Rule:

. . X ‘
lim xe* = lim — = lim

x—>—00 x—>-0 @ X—>-0 —eo

= = lim (—e*) =90
Thus the x-axis is a horizontal asymptote.

We use the methods of Chapter 4 to gather other information concerning the graph.
The derivative is

f'(x) = xe* + % = (x + 1)e*

Since e* is always positive, we see that f(x) >0whenx +1 > 0,and f'(x) < 0
when x + 1 < 0. So [ is increasing on (=1, ») and decreasing on (—oo, —1). Because
f(=1) = 0and f' changes from negative to positiveat x = —1, f(—1) = —¢~ljg 5
local (and absolute) minimum. The second derivative is

F'(x0) = (x + De* + e* = (x + 2)e*

Since f"(x) > 0if x > —2 and f"(x) < Qifx < =2, f is concave upward on (-2, «)
and concave downward on (=, —2). The inflection point is (=2, —2¢7?),
We use this information to sketch the curve in Figure 6. O

INDETERMINATE DIFFERENCES

If lim,,, f(x) = o and lim,_,, g(x) = o, then the limit
Lim [£(x) — g(x)]

is called an indeterminate form of type o — oo, Again there is a contest between Sfandg.
Will the answer be oo (f'wins) or will it be —oo (g9 wins) or will they compromise on a finite
number? To find out, we try to convert the difference into a quotient (for instance, by using
a common denominator, or rationalization, or factoring out a common factor) so that we

have an indeterminate form of type § or %0/00,

EXAMPLE 8 Compute l(in/12)_ (sec x — tan x).

SOLUTION First notice that sec x —s oo and tan x — o a5 y —> (7/2)7, so the limit is
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indeterminate. Here we use a common denominator:

. - 1 sin x
lim (sec x — tanx) = lim -
x> (n/2)" x—>(m2)~ \ COS X  COS X
. 1 —sinx . —COS X
= lim —= lm —F——=
x—=(w/2)~  COS X x—>(7/2)7 —SIn X

Note that the use of I’'Hospital’s Rule is justified because 1 — sin x — 0 and cos x=
asx — (m/2)".

INDETERMINATE POWERS

Several indeterminate forms arise from the limit

lim (0]
I ll_l‘)l:lz f(x) =0 and }1_{1}1 glx) =0 type 0°
. 2. }1_)12 f(x) =~ and }1_r)1}1 g(x) =0 type
3. PEI f(x)=1 and )1(1_1;1‘(11 glx) = *oo type 1°

Each of these three cases can be treated either by taking the natural logarithm:

let y=[f(x)]", then Iny = g(x)Inf(x)

i
i

or by writing the function as an exponential:

[f(x)]g(x) = ey(XJ In f(x)

(Recall that both of these methods were used in differentiating such functions.)
method we are led to the indeterminate product g(x) In f(x), which is of type 0%

)CO[ X

EXAMPLE 9 Calculate lir(r)l+ (1 + sin4x

SOLUTION First notice that as x — 0", we have 1 + sin4x — 1 and cot x — , 80
given limit is indeterminate. Let

y = (1 + sin 4x)*"

Then

Iny = In[(1 + sin 4x)®*] = cot x In(1 + sin 4x)

so I’'Hospital’s Rule gives

4 cos 4x
) ~In(1 + sin4x) 1 4+ sindx
lim Iny = lim = lim 5 =4
x—0% x—0* tan x x—0% secx

So far we have computed the limit of In y, but what we want is the limit of Y-
we use the fact that y = ™

lim (1 + sin 4> = lim

x—0t x—0%

. ) 4
y= lim ™ =e
x—0t

v



unction y = x*, x > 0, is

ice that although 0° is not
the function approach 1 as
s the result of Example 10,

| sketch of Cauchy

SECTION 7.8 INDETERMINATE FORMS AND L’HOSPITAL'S RULE " 477
EXAMPLE 10 Find lixgl+ X
X=>

SOLUTION Notice that this limit is indeterminate since 0* = 0 for any x > Obut x° = |

for any x # 0. We could proceed as in Example 9 or by writing the function as an
exponential:

x* = (elnx)x = exlnx
In Example 6 we used 1'Hospital’s Rule to show that

lim xInx=0
x—0*
Therefore
lim x* = lim e = ¢%= | O
x—0t x—0*
In order to give the promised proof of I’'Hospital’s Rule, we first need a generalization

of the Mean Value Theorem. The following theorem is named after another French math-
ematician, Augustin-Louis Cauchy (1789-1857).

[3] CAUCHY’S MEAN VALUE THEOREM Suppose that the functions f and g are con-
tinuous on [a, b] and differentiable on (a, ), and g'(x) # 0 for all x in (a, b). Then
there is a number c in (g, b) such that

[ _ fb) = f(a)
g'c)  gb) — g(a)

Notice that if we take the special case in which g(x) = x, then g'(c) = 1 and Theorem 3
is just the ordinary Mean Value Theorem. Furthermore, Theorem 3 can be proved in a sim-

ilar manner. You can verify that all we have to do is change the function 4 given by Equa-
tion 4.2.4 to the function

@) - f®) ~ f(a)

h(x) = f(x) — f(a ) = 9@ [9(x) — g(a)]

and apply Rolle’s Theorem as before.

PROOF OF L'HOSPITAL'S RULE  We are assuming that lim,_,, f(x) = 0 and lim, -, g(x) = 0.
Let

W
LT

We must show that lim, ., f(x)/g(x) = L. Define

Flx) = {f(x) if x#a Glx) = {g(x) if x#a

0 if x=a 0 if x=a
Then F is continuous on / since f is continuous on {x €1I|x # a} and

li_{n F(x) = li_r)rif(x) =0 = F(a)
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Likewise, G is continuous on I Let x € [ and x > a. Then F and G are Continuous}ff
[a, x] and differentiable on (a, x) and G’ # 0 there (since F' =f"and G' = g¢'), Th:
fore, by Cauchy’s Mean Value Theorem, there is a number y such thata <y < y and

F'(y) _ Fx) — Fl@ _ F(x)
G'(y) Gk -Gl Gk

Here we have used the fact that, by definition, F(a) = 0 and G(a) = 0. Now, if
x—>at, theny—>a’ (sincea <y < x), SO

@ . F@ o FO) o SO

lim —— = lim im —— = lm
(x) et Gx) et G() e g'(y)

x—at g
A similar argument shows that the left-hand limit is also L. Therefore

iC
e =

This proves 1’'Hospital’s Rule for the case where a is finite.
If a is infinite, we let 1 = 1/x. Thent — 0" as x — o, so we have

. f _ L fA/D)
o g(x) L g(1/1)
i £/n(=1/1*)
ot g'(1/1)(=1/1%)

Cram S
LSy P R AP

(by 1’Hospital’s Rule for finite @)

[

EXERCISES

=4 Given that 3 @lm[f(@) —p() O lmp() = g

iy Flpg = 2 Hophley =1 (@) lim [p(x) + 4]

x—a

limg(x) =0

limp() = limg() = s @EM[FEIO @ In[@PY © il

x—a

which of the following limits are indeterminate forms? For those (d) lim [ p(x)V @ (e) lim [p( ¥)]@  (f) lim

that are not an indeterminate form, evaluate the limit where

2. (2) lim [f(p(x)] (b) lim [A(9p(x)]

() lim [p(x)g(x)]

possible.
. f) . ) 5-64 Find the limit. Use 1’'Hospital’s Rule where 2P
(1] 2 1133 g(x) ®) 1’2 p(x) there is a more elementary method, consider using 1t
h(x) p(%) Rule doesn’t apply, explain why.
© I ) @ i 7 e
5. lm} 5 6.
=l x5 — X

9
x =1
7. lim 8.
—1x5 =1
. 08  sin4x
9. lim K —2 10. lim——
s~(@2)" 1 — sinx 0 tan Ox



) eBI —1
12. lim
t—0 t

1 —sinf
im ————
6—m/2 csc 6

16. i x + x?
=Ny

Inlnx

18. lim

x—>00 X

Inx

20. lim —
x—1 sin 7x

2

1
et~ 1l —% — 5%

22. lim -

x—0 x

. X —sinx
24, lim ——
x—=0 x — tan x

sinx — x
3

26. lim

x—=0 X

2
28. lim M

x—>0 b

COS mx — COS nx
2

30. lim

x=30 X

x
32, lim——
$4h tan~!(4x)

34, Jim 2 t2
e (/202 + 1

36. lim

38, Iim cos xIn(x — a)
x—at  In(e* — e“)

40. lim xZ%*

x—>—00

42. lim sinx Inx

x~>0t

44. lim (1 — tanx)secx

x—7/4

46. lim x tan(1/x)

lin}’ (csc x — cot x)
=i

1
50. lim (cotx & —-)
x—0 X
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51. lim (x — Inx) 52. lim (xe'”* - x)
53. lim X 54. lim (tan 2x)"
a bx
[55.] lin-é(l — 2x)'/x 56. lim (1 + —
x—> X—© X
3 5\
57. lim < 1+=+ —2> 58, liin a0 +ha
xX—® X X x—®
59. lim x'/* 60. lim (e* + x)/*
61. lim (4x + 1) 62. lim (2 — x)an(m/2)
5 2X — 3 2x+1
63. i Ux 64. li
xi%l* (COS X) xgrulc <2x +5 )

65-66 Use a graph to estimate the value of the limit. Then use
p

I"Hospital’s Rule to find the exact value.

65. li 1+2x 66. lim ~— %
. 11m = o
x> X xl—>0 3* = 2

67-68 Illustrate I’'Hospital’s Rule by graphing both f(x)/g(x) and

f'(x)/g'(x) near x = 0 to see that these ratios have the same limit
as x — 0. Also calculate the exact value of the limit.

67. f(x) =e*— 1, g(x)=x>+ 4x

68. f(x) =2xsinx, g(x) =secx — 1

69-74 Use I’Hospital’s Rule to help sketch the curve. Use the
guidelines of Section 4.5.

. In x
(69 y = xe™* 70.y=x2
7. y=xe™ 72. y =¢"/x
73. y=x — In(l + x) 74. y = (x? — 3)e™*

75-77

(a) Graph the function.

(b) Use I'Hospital’s Rule to explain the behavior as x — 0" or
as x — o,

(c) Estimate the maximum and minimum values and then use
calculus to find the exact values.

(d) Use a graph of f"” to estimate the x-coordinates of the inflec-
tion points.

75. f(x) = x* 76. f(x) = (sin x)™*
flx) =x'
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77 78. Investigate the family of curves given by f (x) = x"e™*, where

n is a positive integer. What features do these curves have in
common? How do they differ from one another? In particular,
what happens to the maximum and minimum points and
inflection points as n increases? Illustrate by graphing several
members of the family.

79. Investigate the family of curves given by f(x) = xe™**, where

c is a real number. Start by computing the limits as x — .
Identify any transitional values of ¢ where the basic shape
changes. What happens to the maximum or minimum points
and inflection points as ¢ changes? Illustrate by graphing sev-
eral members of the family.

80. The first appearance in print of I'Hospital’s Rule was in

the book Analyse des Infiniment Petits published by the
Marquis de I’Hospital in 1696. This was the first calculus
textbook ever published and the example that the Marquis
used in that book to illustrate his rule was to find the limit
of the function

J2a3 — x* — a<v/aax
a — +ax?

as x approaches a, where a > 0. (At that time it was common
to write aa instead of a®.) Solve this problem.
81. What happens if you try to use I'Hospital’s Rule to evaluate
5 x
im———
o 4 /x? + 1
Evaluate the limit using another method.

82. If a metal ball with mass m is projected in water and the force
of resistance is proportional to the square of the velocity, then
the distance the ball travels in time 7 is

s(t) = n In cosh 48,
c \ mt

where c is a positive constant. Find lim o+ s(t).

83. If an electrostatic field E acts on a liquid or a gaseous polar
dielectric, the net dipole moment P per unit volume is

ef +e7F
PE)=—5—"F ~

1
e’ —e” E
Show that limg— o+ P(E) = 0.

84. A metal cable has radius » and is covered by insulation, so

that the distance from the center of the cable to the exterior of

the insulation is R. The velocity v of an electrical impulse in

the cable is
2
v=—cC L In L
R R

85.

86.

87.

88.

where c is a positive constant. Find the f0110wing ’

interpret your answers. ;

(a) Rlim+v (b) lim »
=7 r—0*

If an initial amount A, of money is invested at ap
r compounded n times a year, the value of the ip

t years is
A=MQ+L>
n

If we let n — o, we refer to the continuous compps
of interest. Use I’Hospital’s Rule to show that if
compounded continuously, then the amount after ¢

A = Age"

If an object with mass m is dropped from rest, oné
its speed v after 7 seconds, taking air resistance into

v = ﬂ(l — e—Cl/m)
c

where g is the acceleration due to gravity and c isa:
constant. (In Chapter 10 we will be able to deduce
equation from the assumption that the air resistan
proportional to the speed of the object; ¢ is the pro e
tionality constant.)
(a) Calculate lim,_... v. What is the meaning of thi§
(b) For fixed ¢, use ’Hospital’s Rule to calculate lim
What can you conclude about the velocity of a fa
object in a vacuum?

In Section 5.3 we investigated the Fresnel function -
S(x) =[5 sin(}71?) dt, which arises in the study of
fraction of light waves. Evaluate

. S(x)
lim —;
x—0 X°

Suppose that the temperature in a long thin rod pli
the x-axis is initially C/(2a) if | x| < a and O if |x
be shown that if the heat diffusivity of the rod is k
temperature of the rod at the point x at ime is

—(x=u)7@0 dy

T(x, 1) = o, ja e
a+/4mkt Jo

To find the temperature distribution that results
hot spot concentrated at the origin, we need to €O

lin}) T(x, 1)

Use I’Hespital’s Rule to find this limit.



£(2) = 0,and f'(2) = 7, evaluate

1S,

f(2 + 3x) +f(2 + 5x)

of a and b is the following equation true?

(smzx+a+%>=0
% x

s, use 1’Hospital’s Rule to show that

Wx+h)—fx—h)
: 2h

=f'(x)

ing of this equation with the aid of a

nuous, show that

HB) =20 +fx— k) _
h2

(%)

lim— = o

x—o X

ve integer n. This shows that the exponential func-
infinity faster than any power of x.

Inx

lim
FSe P

=0

! P > 0. This shows that the logarithmic
fes © more slowly than any power of x.

0+x“In x = 0 for any a > 0.
; 2‘sin(tz) dt.

0

A sector of a circle with central angle 6. Let
Of the segment between the chord PR and the

FH100.

WRITING PROJECT THE ORIGINS OF L'HOSPITAL'S RULE  [|||

arc PR. Let B(6) be the area of the triangle POR. Find
limg_, o+ A(6)/B(6).

98. The figure shows two regions in the first quadrant: A(z) is the
area under the curve y = sin(x?) from 0 to 7, and B(?) is the
area of the triangle with vertices O, P, and (2, 0). Find
lim,_, o+ A(t)/B(z).
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¥ r B

P(t,sin(r?)) P(t,sin(1?))

y = sin(x?)

A1) B(1)

0 r x 0 t  x
99. Let
eV if x#0
ﬂ”—{o if x=0

(a) Use the definition of derivative to compute f'(0).

(b) Show that f has derivatives of all orders that are defined
on R. [Hint: First show by induction that there is a poly-
nomial p,(x) and a nonnegative integer , such that
TP = pa(f (x)/x* for x # 0.]

Let

_Jlx]r ifx#0
ﬂ”_{l if x=0

(a) Show that f is continuous at 0.

(b) Investigate graphically whether £ is differentiable at 0 by
zooming in several times toward the point (0, 1) on the
graph of f.

(c) Show that f is not differentiable at 0. How can you

reconcile this fact with the appearance of the graphs in
part (b)?

THE ORIGINS OF L'HOSPITAL'S RULE

L'Hospital’s Rule was first published in 1696 in the Marquis de I’Hospital’s calculus textbook
Analyse des Infiniment Petits, but the rule was discovered in 1694 by the Swiss mathematician
John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a
curious business arrangement whereby the Marquis de 1'Hospital bought the rights to Bernoulli’s




482

Thomas Fisher Rare Book Library

www.stewartcalc '.QIUS.CO m

The Internet is another source of infor-
mation for this project. Click on History

of Mathematics for a list of reliable websites.

[l CHAPTER 7 INVERSE FUNCTIONS

ANALYSE

DES
INFINIMENT PETITS,

7OoUR
LINTELLIGENCE DES LIGNES COURBES.

Par 30 & Mo D3 Hotrizar

SECONDE EDITION.

A PARIS, 5 2
Chiez ETIENNE PAPILLON, roe § Jacqees,
anAmuJAng)umc.
MDCCXVL
AVEC APTROBATION ET FRIVILEGE DU Bor.

mathematical discoveries. The details, including a translation of 1’Hospital’s letter to Ber
proposing the arrangement, can be found in the book by Eves [1].

Write a report on the historical and mathematical origins of I’Hospital’s Rule. Start by,
viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a gc
source) and outline the business deal between them. Then give I’Hospital’s statement of
which is found in Struik’s sourcebook [4] and more briefly in the book of Katz [3]. Notjc
"Hospital and Bernoulli formulated the rule geometrically and gave the answer in termg ¢
ferentials. Compare their statement with the version of 1’'Hospital’s Rule given in Section
show that the two statements are essentially the same. :

I. Howard Eves, In Mathematical Circles (Volume 2: Quadrants III and IV) (Boston: Py
Weber and Schmidt, 1969), pp. 20-22.

. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974),
article on Johann Bernoulli by E. A. Fellmann and J. O. Fleckenstein in Volume II an
article on the Marquis de I’Hospital by Abraham Robinson in Volume VIII.

3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, |

p. 484,

4. D.J. Struik, ed., A Sourcebook in Mathematics, 1200—1800 (Princeton, NJ: Princeton
versity Press, 1969), pp. 315-316.

7 REVIEW
CONCEPT CHECK
I. (a) What is a one-to-one function? How can you tell if a func- (d) y = log,x (e) y =sin"'x (f) y=rcos™%
tion is one-to-one by looking at its graph? (g) y = tan"'x (h) y = sinh x (i) y = coshy
(b) If f is a one-to-one function, how is its inverse function (j) y = tanh x (k) y=sinh™'x (1) y=cosh®

/! defined? How do you obtain the graph of £~ from the
graph of f?

(c) If f is a one-to-one function and f'( £~ '(a)) # 0, write a
formula for (f7)'(a).

. (a) What are the domain and range of the natural exponential

function f(x) = e*?

(b) What are the domain and range of the natural logarithmic
function f(x) = Inx?

(c) How are the graphs of these functions related? Sketch these
graphs by hand, using the same axes.

(d) If a is a positive number, a # 1, write an equation that
expresses log, x in terms of In x.

. (a) How is the inverse sine function f(x) = sin™'x defined?

What are its domain and range?

(b) How is the inverse cosine function f(x) = cos™'x defined?
What are its domain and range?

(c) How is the inverse tangent function f(x) = tan™'x defined?
What are its domain and range? Sketch its graph.

. Write the definitions of the hyperbolic functions sinh x, cosh x,

and tanh x.

. State the derivative of each function.

(a) y=¢e* (b) y=a* (c) y=Inx

(m) y = tanh™'x

6. (a) How is the number e defined?

(b) Express e as a limit.

(c) Why is the natural exponential function y = e” use
often in calculus than the other exponential functiol
y=a*?

(d) Why is the natural logarithmic functlon y=hxu
often in calculus than the other logarlthrmc function
y = log, x?

7. (a) Write a differential equation that expresses the
natural growth. ‘

(b) Under what circumstances is this an appropriale;%
population growth? ;
(c) What are the solutions of this equation?

8. (a) What does I’'Hospital’s Rule say?
(b) How can you use I’Hospital’s Rule if you hav
f(x)g(x) where f(x) — 0 and g(x) — © as X

(c) How can you use I’Hospital’s Rule if you hav
f(x) — g(x) where f(x) — c and g(x) — ® @

(d) How can you use I’Hospital’s Rule if you haV
[f(x)]*® where f(x) — 0 and g(x) — O as *
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the statement is true or false. If it is true, explain why. 10, d (10%) = 510+~
why or give an example that disproves the statement, " dx _—

ne, with domain R, then f~!(f(6)) = 6.

ne and differentiable,with domain R, then
"(6). 12. The inverse function of y = ¢ s y=ilnax

d 1
. — l g
. dx (o) 10

X) =cosx, —m/2 < x < 7/2, is one-to-one. 1

=1

13. cos™'x = 14, tan~'y = sm\ﬂx

37/4 cos x cos”lx
5 1 d
then Ina < In b. I5. cosh x = 1 for all x 16 In—= - [ 2%
10 1 ox

16 dx
s divide by e*. 17 = 3In2
> 0,thenIn(a + b) =Ing + In b, —_— ceci
8. lim =1 =

= lim —
—m 1 —cosx 50 sinx

f is shown. Is f one-to-one? Explain. 7. y=—Inx
¥

8 y=Inx-1)
9. y = 2arctan x

B N

10. Leta > 1. For large values of x, which of the functions y =x9

Yy =a’, and y = log, x has the largest values and which has the
smallest values?

1112 Find the exact value of each expression.
1. (a) e23 (b) logi025 + log,o4

one-to-one? 12. (@) Ine” (b) tan(arcsin !)
‘_"the value of g7!(2).

13-20 Solve the equation for x.

13. Inx =1 14. e =1 _
I5. &’ =17 16. In(1 + ¢*) =3
I7. In(x + 1) + In(x — 1)=1 18. logs(c*) = d
19. tan™'x = 1 20. sinx = 0.3

e e

21-47 Differentiate.

t

21 (1) = Ins 22, 4() = li ,
N€-to-one, f(7) = 3, and f'(7) = 8. Find ‘
®) (1) (3). 23. h(9) = 2 24. h(u) = 10V
25. y = In|sec 5x + tan 5x| 26. y=e(t> - 2t +2)
27. y = e“(csin x — cos X) 28. y = e™cos nx
h graph of the function without using a 29; y = I {aechy) 30. y = In(x%)
el/x

.y = —¢7* 3. y= = ' 32. y = (arcsin 2x)2
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33, y=3*" 34. y = " + cos(e”)
35. H(v) = vtan™'v 36. F(z) = logi(l + 2°)
37. y = xsinh(x?) 38. y = (cos x)*
39. y=Insinx — 3 sin’x 40. y = arctan(arcsin \/; )
1 1 ‘
4. y=In\— | +— 42, xe’ =y — 1
X In x
(x2+ 1)*
43. y=1 h3 44. y =
y = Infeosh 31) Y= ax + 1)°G6x — 1)
45. y = cosh™'(sinh x) 46. y = xtanh™'V/x
47. y = cos(em)
48. Show that
d 1 -1 1 (.X + 1)2 1
—\ 3t + ;1 =
dx(z anxE T AT 1+ 00 + )

49-52 Find f' in terms of g'.
49. f(x) = e*¥
51, £() = In |4 |

50. f(x) = g(e”)
52. f(x) = g(In x)

53-54 Find f®(x).

53. f(x) =2" 54. f(x) = In(2x)

55. Use mathematical induction to show that if f (x) = xe”,
then f"(x) = (x + n)e™.

56. Find y' if y = x + arctan y.

57-58 Find an equation of the tangent to the curve at the given
point.

57. y= 2+ x)e™, (0,2) 58. y=xInx, (ee)

59. At what point on the curve y = [In(x + 4)7* is the tangent
horizontal?

If f(x) = xe*™, find f'(x). Graph f and f' on the same
screen and comment.

61. (a) Find an equation of the tangent to the curve y = e” that is

parallel to the line x — 4y = 1.
(b) Find an equation of the tangent to the curve y = e” that
passes through the origin.

62. The function C(f) = K(e™ — ¢™*'), where a, b, and K are

positive constants and b > a, is used to model the concentra-

tion at time ¢ of a drug injected into the bloodstream.

(a) Show that lim,—. C(#) = 0.

(b) Find C'(¢), the rate at which the drug is cleared from
circulation.

(c) When is this rate equal to 0?

63-78 Evaluate the limit.

s —3x . 1
63. Xh_r,ri e 64. XLHBf In(100 — x?)
65. lim g 66. lim arctan(x’ ~ 4
67. liig In(sinh x) 68. lim e *sin x
L1+ 2 .
69. lim — o 70. lim
. tan Tx .
T Ume————% 72. lim
x—0 In(1 + X) x—0
e —1-—4x )
73. lim 2 74. lim
x—0 X x—®
75. lim x’e”* 76. 1'11?)1+ X
77 lim _L _— __1_ 78 i ( cos X
CSt\x -1  Inx * ety 4

79. y = tan"'(1/x) 80. y = sin"'(1/x)

8l. y=xInx 82. y =¥ "

83. y=xe 84. y=x + In(x* + 18

85. Graph f(x) = e -1/+" in a viewing rectangle that shows
main aspects of this function. Estimate the inflection point
Then use calculus to find them exactly. i

86. Investigate the family of functions f (x) = cxe -4 Whl{%
pens to the maximum and minimum points and the inf

points as ¢ changes? Illustrate your conclusions by grd
several members of the family. '

87. An equation of motion of the form s = Ae ™' cos(wt
represents damped oscillation of an object. Find the
and acceleration of the object.

88. (a) Show that there is exactly one root of the equation:
In x = 3 — x and that it lies between 2 and e..
(b) Find the root of the equation in part (a) correct
decimal places.

89. A bacteria culture contains 200 cells initially and g
rate proportional to its size. After half an hour the P
has increased to 360 cells.

(a) Find the number of bacteria after ¢ hours.

(b) Find the number of bacteria after 4 hours.

(c) Find the rate of growth after 4 hours.

(d) When will the population reach 10,000? "

90. Cobalt-60 has a half-life of 5.24 years.
() Find the mass that remains from a 100-mg 52
20 years.
(b) How long would it take for the mass to decay *




 G. F. Gause conducted an experiment in the
the protozoan Paramecium and used the population

64

P(t) = 1 + 31 0%

(data, where 1 was measured in days. Use this
: ne when the population was increasing most

ﬂ;e integral.

93. fo 'ye " gy

1 e
9. | s

NS
= 97. f f/; dx

Xk 1
99. fmdx

101. f tan x In(cos x) dx

103. f 2810 5ec29 46

105, f(l ;x>2dx

10. £(x) =f‘e"2dt

2

In

erage value of the function f(x) = 1/x on the
4],

of the region bounded by the curves
€x=-2 andx=1.

ume of the solid obtained by rotating about the
&1on under the curve y = 1/(1 + x*) from x = 0
X%+ e find (£ (1),

I x + tan~1, find ( 7Y (/4).
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116. What is the area of the largest rectangle in the first quadrant

with two sides on the axes and one vertex on the curve
y =72

117. What is the area of the largest triangle in the first quadrant

with two sides 'on the axes and the third side tangent to the
curve y = ¢ *?

118. Evaluate fol e” dx without using the Fundamental Theorem of
Calculus. [Hint: Use the definition of a definite integral with
right endpoints, sum a geometric series, and then use
I’'Hospital’s Rule.]

9. If F(x) = [?+*dt, where a, b > 0, then, by the Fundamental
Theorem,
brHl — gt

Flx) = i s A |

F(=1)=Inb-Ina

x # —1

Use I'Hospital’s Rule to show that F is continuous at — 1.

120. Show that

xr+1
i t = —
cos{arctan[sin(arccot x)]} A /xz =3

121. If £ is a continuous function such that
% —_ 2x * -t
J;f(t)dt—xe +Le 'f(r) dt

for all x, find an explicit formula for f(x).

122. (a) Show thatln x < x — 1 for x > 0,x # 1.
(b) Show that, for x > 0, x 1,

%=1
—<Inx
x

(c) Deduce Napier’s Inequality:

I Inb-1Ina 1
b b—a a
ifb>a>0.
(d) Give a geometric proof of Napier’s Inequality by com-
paring the slopes of the three lines shown in the figure.

y

(e) Give another proof of Napier’s Inequality by applying
Property 8 of integrals (see Section 5.2) to {7 (1/x) dx.
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= Cover up the solution to the example and try

it yourself.

FIGURE |

FIGURE 2
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y=Inx

FIGURE 3

EXAMPLE | For what values of ¢ does the equation In x = cx” have exactly ope
solution?

SOLUTION One of the most important principles of problem solving is to draw a diae
even if the problem as stated doesn’t explicitly mention a geometric situation, Q)
ent problem can be reformulated geometrically as follows: For what values of ¢
curve y = In x intersect the curve y = cx? in exactly one point?

Let’s start by graphing y = In x and y = cx? for various values of c. We kng
for ¢ # 0, y = cx? is a parabola that opens upward if ¢ > 0 and downward if e
Figure 1 shows the parabolas y = cx? for several positive values of c. Most of
don’t intersect y = In x at all and one intersects twice. We have the feeling that
must be a value of ¢ (somewhere between 0.1 and 0.3) for which the curves ine
exactly once, as in Figure 2.

To find that particular value of ¢, we let a be the x-coordinate of the single po
intersection. In other words, In a = ca?, so a is the unique solution of the given.
tion. We see from Figure 2 that the curves just touch, so they have a common ta
line when x = a. That means the curves y = In x and y = cx? have the same slo
x = a. Therefore

1
— = 2ca
a

Solving the equations In a = ca® and 1/a = 2ca, we get

1na=ca2=c--1—=l
2c 2
Thus a = ¢'/? and
Ina Ine'”? 1
c= = = = —
a e 2e

once.

y=Inx




I. If a rectangle has its base on the x-axis and two vertices on the curve y = ¢ ™', show that the
rectangle has the largest possible area when the two vertices are at the points of inflection of
the curve.

2. Prove that log, 5 is an irrational number.

3. Show that

n

— (e sin bx) = r"e* sin(bx + no)
X

where a and b are positive numbers, r2 = a2 + b2 and § = tan~'(b/a).
4. Show that sin™'(tanh x) = tan™'(sinh x).

5. Show that, for x > 0,

l_ﬁ <tan"x < x
X

6. Suppose f is continuous, £(0) = 0, (1) = 1, f'(x) >0, and [ f(x) dx = 1. Find the value of
the integral [, f~'(y) dy.
7. Show that f(x) = [7\/1 + 13 dt is one-to-one and find (fH%0).

8. If
X 2 . sin x
= = arcta
Y Var—=1  Jar -1 a+ ya? =1+ cos x
, 1
show that y’ = ————
a + cos x

9. For what value of g is the following equation true?

. <x+a)"
lim =e
—e \x — g

10. Sketch the set of all points (x, y) such that | x + v se~

I, Prove that cosh(sinh x) < sinh(cosh x) for all x.

¥

Show that, for all positive values of x and Y,
ex+ y
Xy

13. For what value of k does the equation e = k+/x have exactly one solution?

=e

14. For which positive numbers a is it true that a* = 1 + x for all x?
I5. For which positive numbers a does the curve Yy = a” intersect the line y = x?

16. For what values of ¢ does the curve y = cx® + e* have inflection points?
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