APPLICATIONS OF
INTEGRATION

The volume of a sphere is
the limit of sums of volumes

of approximating cylinders.

In this chapter we explore some of the applications of the definite integral, such as
computing areas between curves, volumes of solids, and the work done by a varying
force. The common theme is the following general method, which is similar to the o1
we used to find areas under curves: We break up a quantity Q into a large number of
small parts. We next approximate each small part by a quantity of the form f(x") Ax :
thus approximate Q by a Riemann sum. Then we take the limit and express Q as an
integral. Finally we evaluate the integral using the Fundamental Theorem of Calculu
or the Midpoint Rule.

346




FIGURE 2

AREAS BETWEEN CURVES

In Chapter 5 we defined and calculated areas of regions that lie under the graphs of
functions. Here we use integrals to find areas of regions that lie between the graphs of two
functions.

Consider the region S that lies between two curves y = f(x) and y = g(x) and be-
tween the vertical lines x = a and x = b, where f and g are continuous functions and
f(x) = g(x) for all x in [a, b). (See Figure 1.)

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal
width and then we approximate the ith strip by a rectangle with base Ax and height
F(x¥) — g(x¥). (See Figure 2 If we like, we could take all of the sample points to be right
endpoints, in which case x¥ = x;.) The Riemann sum

2 LF(F) — gxD)] Ax

is therefore an approximation to what we intuitively think of as the area of S.
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This approximation appears to become better and better as n — . Therefore we define
the area A of the region S as the limiting value of the sum of the areas of these approxi-
mating rectangles.

o A=lim 3 G — gD Ax

N9 jamy

We recognize the limit in (1) as the definite integral of f — g. Therefore we have the fol-
lowing formula for area.

The area A of the region bounded by the curves y = f (x),y = g(x), and the
lines x = a, x = b, where f and g are continuous and f(x) = g(x) for all x in [a, b], is

A= [ 170 = g00]dx

Notice that in the special case where g(x) = 0, S is the region under the graph of f
and our general definition of area (1) reduces {0 our previous definition (Definition 2 in
Section 5.1).
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FIGURE 3
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In the case where both f and g are positive, you can see from Figure 3 why (2
A = [area under y = f(x)] — [area under y = g(x)]
b b b :
= [(f@ax~ ["g@ax = ["[f() - g(]dx

EXAMPLE | Find the area of the region bounded above by y = x? + 1, bounded |
by y = x, and bounded on the sides by x = 0 and x = 1.

SOLUTION The region is shown in Figure 4. The upper boundary curve is y = x2 +
the lower boundary curve is y = x. So we use the area formula (2) with f(x) = x
g(x) =x,a=0, and b = 1:

A= fol [(x*+ 1) = x]dx = Ll (x?—x+ 1)dx

A

® X SR B 5
S N R P N T .
3 3 . 3 3 6

In Figure 4 we drew a typical approximating rectangle with width Ax as a rem
the procedure by which the area is defined in (1). In general, when we set up an
for an area, it’s helpful to sketch the region to identify the top curve yr, the botto:
ys, and a typical approximating rectangle as in Figure 5. Then the area of a typi
angle is (yr — yg) Ax and the equation

A= ]1m7 E (yr — ys) Ax —j (yr— yp) d

n—ow :

summarizes the procedure of adding (in a limiting sense) the areas of all the
rectangles.

Notice that in Figure 5 the left-hand boundary reduces to a point, whereas in [
the right-hand boundary reduces to a point. In the next example both of the side
aries reduce to a point, so the first step is to find a and b.

V] EXAMPLE 2 Find the area of the region enclosed by the parabo]as y = x*and
y = 2x — x*

SOLUTION We first find the points of intersection of the parabolas by solving their ec
tions simultaneously. This gives x? = 2x — x% or 2x?> — 2x = 0. Thus 2x(x — 1)
so x = 0 or 1. The points of intersection are (0, 0) and (1, 1).
We see from Figure 6 that the top and bottom boundaries are
yr=2x — x* and Yo = x
The area of a typical rectangle is

(yr — yo) Ax = (2x — x> — x*) Ax

and the region lies between x = 0 and x = 1. So the total area is

A =J.l(2x* 2x2)dx=2J.‘ (x — x?) dx
0 0




pEecEe s

SECTION 6.1 AREAS BETWEEN CURVES [||| 349

Sometimes it’s difficult, or even impossible, to find the points of intersection of two
curves exactly. As shown in the following example, we can use a graphing calculator or
computer to find approximate values for the intersection points and then proceed as before.

EXAMPLE 3 Find the approximate area of the region bounded by the curves
y=x/Jx?+ landy=x"—x.

SOLUTION If we were to try to find the exact intersection points, we would have to solve
the equation

X

—_— e e d

This looks like a very difficult equation to solve exactly (in fact, it’s impossible), so
instead we use a graphing device to draw the graphs of the two curves in Figure 7. One

= P! intersection point is the origin. We zoom in toward the other point of intersection and

find that x =~ 1.18. (If greater accuracy is required, we could use Newton’s method or a
2 rootfinder, if available on our graphing device.) Thus an approximation to the area
between the curves is

_ 1.18 5 "
A"‘j\o \/;2——*_—_1—()&' —x) dx

To integrate the first term we use the subsitution u = x> + 1. Then du = 2xdx, and
when x = 1.18, we have u =~ 2.39. So

239 du

w du s,
B [

; PEEEE
e [2-]

0

(1.18)° 3 (1.18)

=4239—-1~-
¢ 5 2

=~ 0.785 : O

7 I EXAMPLE 4 Figure 8 shows velocity curves for two cars, A and B, that start side by side

T and move along the same road. What does the area between the curves represent? Use

| the Midpoint Rule to estimate it.

— SOLUTION We know from Section 5.4 that the area under the velocity curve A represents

the distance traveled by car A during the first 16 seconds. Similarly, the area under curve

l B is the distance traveled by car B during that time period. So the area between these

curves, which is the difference of the areas under the curves, is the distance between the

cars after 16 seconds. We read the velocities from the graph and convert them to feet per

% 5 10 :
sl second (1 mi/h = 32 ft/s).

(seconds)
t 0 j 2 4 6 8 10 12 14 16
N 0 34 54 67 76 84 89 92 95
Vg 0 21 34 44 * 51 56 60 63 65

va — U 0 13 20 23 25 28 29 29 30
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We use the Midpoint Rule with n = 4 intervals, so that At = 4. The midpoings 0{
intervals are 7, = 2,7, = 6, 1 = 10, and 7, = 14. We estimate the distance betwee
cars after 16 seconds as follows: - i

fow (0 — vg) dt =~ Ar[13 + 23 + 28 + 29]

= 4(93) = 372 ft

If we are asked to find the area between the curves y = f(x) and y = g(x)!-
f(x) = g(x) for some values of x but g(x) = f(x) for other values of x, then we spﬁ
given region S into several regions S, S, . . . with areas Ay, A, . . . as shown in Flgxn
We then define the area of the region S to be the sum of the areas of the smaller mg,
Si, S2, ..., thatis, A=A, + A, + - -. Since

| f(x) — g(x)| = {f(x) — g(x) when f(x) = g(x)
g(x) — f(x) when g(x) = f(x)

we have the following expression for A.

[3] The area between the curves y = f(x) and y = g(x) and between x = ¢ and
x=bis

A= "1 - g | dx

When evaluating the integral in (3), however, we must still split it into integrals ¢
sponding to A;, A, . . ..

iZ EXAMPLE 5 Find the area of the region bounded by the curves y = sin x, y = ¢08
x =20, and x = 7/2. ,
SOLUTION The points of intersection occur when sin x = cos x, that is, when x = 77/4.‘,:
(since 0 < x < 7/2). The region is sketched in Figure 10. Observe that cos x = sifid
when 0 < x < 77/4 but sin x = cos x when 7/4 < x < /2. Therefore the required
area is

/2 .
A=f0 |cos x — sinx|dx = A, + A,

/4 . /2 ; .,
=L" (cosx—smx)dx+f7; (sin x — cos x) dx
/4

/4

. ) /2
= [sm x + cos x]o

+ [-cos X — sin x]m

e drmomt)+ (o)
=2y2-2

In this particular example we could have saved some work by noticing that the lﬂg
is symmetric about x = /4 and so .’ !

A=2A,=2 Lﬂm (cos x — sin x) dx

_
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Some regions are best treated by regarding x as a function of y. If a region is bounded
by curves with equations x = f(y), x = g(y), y = ¢, and y = d, where f and g are contin-
uous and f(y) = g(y) for ¢ <y < d (see Figure 11), then its area is

A= ["1fG) = g»dy

y y
y=d d
d e e
XL
}Ay
x=g(y) x=f(y)
cb———
y=c ol
0 x 0 x
FIGURE 11 FIGURE 12

If we write xg for the right boundary and x, for the left boundary, then, as Figure 12
illustrates, we have

d
A= JL (xr — XL)d}’
Here a typical approximating rectangle has dimensions xz — x, and Ay.

7 EXAMPLE 6 Find the area enclosed by the line y = x — 1 and the parabola
(5, 4) y?=2x+ 6.

SOLUTION By solving the two equations we find that the points of intersection are
(—1, —2) and (5, 4). We solve the equation of the parabola for x and notice from

xp=y+1 Figure 13 that the left and right boundary curves are
& xn=3y"—3 xw=y+1
We must integrate between the appropriate y-values, y = —2 and y = 4. Thus

4 = sz (xr = x) dy
= sz [+ 1) = (3y* - 3)]ay
= (3 +y+4)ay

1(y y? )
—— (=) +==+4
y=x—-1 2(3) 2 7

x =—¢64)+8+16—-(3+2—-8)=18 ]

We could have found the area in Example 6 by integrating with respect to x instead of
y, but the calculation is much more involved. It would have meant splitting the region in
two and computing the areas labeled A, and A, in Figure 14. The method we used in
Example 6 is much easier. "
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6.1 | EXERCISES

1-4 Find the area of the shaded rggion.

22. y = sin(wx/2), y=x

I

23. y=cosx, y=sin2x, x=0, x=7/2
é4}y=cosx, y=1—cosx, 0sxsn
25. y=cosx, y=1—2x/m

26. y=|x|, y=x'—-2

27. y=1/x% y=x, y=j3x
28. y=3x% y=28x% 4x+y=4, x=0

I. y - s 22 \ 24 y
T y=5x—x \_/ 6.12)
(4,4)
y=x 0
y=2x
\ > y=x>—4x
3% '\\T 4. y
yi=il x=y'—4dy |
x=y*—1 _~
(=3,3)— >
| -
x=2y—y*

29-30 Use calculus to find the area of the triangle with the
vertices.

29] (0,0), (2,1), (=1,6)
30. (0,5), (2,-2), (5,1)

5-28 Sketch the region enclosed by the given curves. Decide
whether to integrate with respect to x or y. Draw a typical approx-
imating rectangle and label its height and width. Then find the

area of the region.

5. y=x+1, y=9—-x% x=-1, x=2

(6) y=sinx, y=x, x=m/2, x=m

)

1. y=x, y=x

8 y=x"—-2x, y=xt4

N\

9.y=+x+3, y=(x+3)2

10. y=1++x, y=03+x)/3

12. y=x% y=4x—x*
B]y=12-x% y=x*-6

14, y=cosx, y=2—cosx, O0sxs<2mw

I5. y =sec’x, y=8cosx, —m/3<x<m/3
16. y=x>—x, y=3x

17.y=vx, y=1x x=9

l§. y=8—x2, y:xz, x=-=3, x=3

19. x = 2y?, x:4+y2
20. 4x +y? =12, x=y
RIjx=1-y% x=y>-1

31-32 Evaluate the integral and interpret it as the area of a
region. Sketch the region.

31 ‘m/2|sinx—C052x|d,\' 32. 4'\"“’ +2 —x|d
Jo Jo

33-34 Use the Midpoint Rule with n = 4 to approximate |
area of the region bounded by the given curves.

33. y = sin¥(wx/4), y = cos’(mx/4), 0sx=sI

4. y=3Jl6 —x*, y=x, x=0

35-38 Use a graph to find approximate x-coordinates of th

of intersection of the given curves. Then find (approximate
area of the region bounded by the curves.

35. y=xsin(x?), y=x% x=0
36. y = x* y=3x-x°
37. y=3x2—-2x, y=x"—3x+4

38. y=xcosx, y=ux"

(A5]39. Use a computer algebra system to find the exact area

enclosed by the curves y = x* — 6x° + 4xand y = X

40. Sketch the region in the xy-plane defined by the inequt
x—2y*=0,1—-x—|y| =>0and find its area.

41. Racing cars driven by Chris and Kelly are side by side
start of a race. The table shows the velocities of each ¢
miles per hour) during the first ten seconds of the race
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Rule to estimate how much farther Kelly travels
+¢ does during the first ten seconds.

"'IFT Vk t Uc Uk
g | o| off 6| 6 | 8
p Lo | 2| 7|75 8
o | | 37| 8| 81| @3
2 | 46 | 52| 9| 8 | 98
i, | ss |61 || 10| %0 | 102
| - 7

f(in meters) of a kidney-shaped swimming pool
red at 2-meter intervals as indicated in the figure.
int Rule to estimate the area of the pool.

£
section of an airplane wing is shown. Measurements
ess of the wing, in centimeters, at 20-centimeter
are 5.8, 20.3, 26.7, 29.0, 27.6, 27.3, 23.8,20.5, 15.1,
12.8. Use the Midpoint Rule to estimate the area of
o's cross-section.

bl gl Eon
b 200cm———

i,fate of a population is

200 + 52.3t + 0.741% people per year and the death
) = 1460 + 28.87 people per year, find the area

tese curves for 0 <t < 10. What does this area

2 shows the graphs of their velocity functions.

car is ahead after one minute? Explain.

15 the meaning of the area of the shaded region?

) car is ahead after two minutes? Explain.

e time at which the cars are again side by side.

1 2 t (min)

A and B, start side by side and accelerate from rest.

46.

48.

49.

50.
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The figure shows graphs of the marginal revenue function R’
and the margina] cost function C' for a manufacturer. [Recall
from Section 4.7 that R(x) and C(x) represent the revenue and
cost when x units are manufactured. Assume that R and C are
measured in thousands of dollars.] What is the meaning of the
area of the shaded region? Use the Midpoint Rule to estimate
the value of this quantity.

y
R'(x)
3-.
2_.
W
0 50 100 X

. The curve with equation y> = x*(x + 3) is called Tschirn-

hausen’s cubic. If you graph this curve you will see that part
of the curve forms a loop. Find the area enclosed by the loop.

Find the area of the region bounded by the parabola y = %%
the tangent line to this parabola at (1, 1), and the x-axis.

Find the number b such that the line y = b divides the region
bounded by the curves y = x*and y = 4 into two regions
with equal area.

(a) Find the number a such that the line x = a bisects the
area under the curve y = 1/x% 1 < x < 4.

(b) Find the number b such that the line y = b bisects the
area in part (a).

[5L.] Find the values of ¢ such that the area of the region bounded

52.

by the parabolas y = x> — ¢*andy = c?— x*is 576. "

Suppose that 0 < ¢ < /2. For what value of ¢ is the area of
the region enclosed by the curves y = cos x, y = cos(x — ¢),
and x = 0 equal to the area of the region enclosed by the
curves y = cos(x — ¢), x = m, and y = 0?

The following exercises are intended only for those who have
already covered Chapter 7.

53-55 Sketch the region bounded by the given curves and find
the area of the region.

@y=l/x, )’=1/x2, x=2

54. y =sinx, y=¢e", x=0, x= /2

55. y=tanx, y=2sinx, —m/3<x< /3

For what values of m do the line y = mx and the curve

y = x/(x* + 1) enclose a region? Find the area of the region.
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6.2

VOLUMES

FIGURE 1|

FIGURE 2

In trying to find the volume of a solid we face the same type of problem as in
We have an intuitive idea of what volume means, but we must make this id
using calculus to give an exact definition of volume.

We start with a simple type of solid called a cylinder (or, more precisely,
der). As illustrated in Figure 1(a), a cylinder is bounded by a plane region ;
base, and a congruent region B; in a parallel plane. The cylinder consists of
line segments that are perpendicular to the base and join B, to B,. If the area .
A and the height of the cylinder (the distance from B, to B,) is &, then the vol
cylinder is defined as

V=Ah

In particular, if the base is a circle with radius r, then the cylinder is a circular ¢
volume V = 7rr’h [see Figure 1(b)], and if the base is a rectangle with lengtt
w, then the cylinder is a rectangular box (also called a rectangular parallel
volume V = [wh [see Figure 1(c)].

(a) Cylinder (b) Circular cylinder (c) Rectangular
V=Ah V=7rh V=Ilwh

For a solid § that isn’t a cylinder we first “cut” S into pieces and approximat
by a cylinder. We estimate the volume of § by adding the volumes of the C)
arrive at the exact volume of § through a limiting process in which the numb
becomes large. ,

We start by intersecting S with a plane and obtaining a plane region thai
cross-section of S. Let A(x) be the area of the cross-section of S in a planc
dicular to the x-axis and passing through the point x, where a < x < b. (S¢
Think of slicing S with a knife through x and computing the area of this slice.
sectional area A(x) will vary as x increases from a to b.

Y
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Let’s divide S into n “slabs” of equal width Ax by using the planes Py, P, . . . to slice
the solid. (Think of slicing a loaf of bread.) If we choose sample points x* in [xi-1, x;], we
can approximate the ith slab S; (the part of S that lies between the planes Ps,_, and P,) by
a cylinder with base area A(x¥) and “height” Ax. (See Figure 3)

"

that this definition is inde-
situated with respect to
jords, no matter how we
planes, we always get the

The volume of this cylinder is A(x) Ax, so an approximation to our intuitive concep-
tion of the volume of the ith slab S; is

V(Si) = A(xf) Ax

Adding the volumes of these slabs, we get an approximation to the total volume (that is,
what we think of intuitively as the volume):

v~ 2 Al Az

This approximation appears to become better and better as n — . (Think of the slices as
becoming thinner and thinner.) Therefore, we define the volume as the limit of these sums
as n — . But we recognize the limit of Riemann sums as a definite integral and so we

have the following definition.

DEFINITION OF VOLUME Let S be a solid that lies between x = a and x = b. If the
cross-sectional area of S in the plane P;, through x and perpendicular to the X-axis,
is A(x), where A is a continuous function, then the volume of S is

V= lim 3, AG¥) Ax = j” A(x) dx

n—® =1 J

When we use the volume formula V = ﬁA(x) dx, it is important to remember that
A(x) is the area of a moving cross-section obtained by slicing through x perpendicular to
the x-axis.

Notice that, for a cylinder, the cross-sectional area is constant: A(x) = A for all x. So our
definition of volume gives V = [? Adx = A(b — a); this agrees with the formula V = Ah.

EXAMPLE | Show that the volume of a sphere of radius r is V=3mr’.

SOLUTION If we place the sphere so that its center is at the origin (see Figure 4), then the
plane P, intersects the sphere in a circle whose radius (from the Pythagorean Theorem)
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is y = 4/r? — x2. So the cross-sectional area is

Alx) = my? = w(r* — x?)

Using the definition of volume with a = —r and b = r, we have

V= J_rrA(x) dx = f'

w(r? — x?)dx

r
= 27Tj (r2 = x2) dx (The integrand is ever
0
3 1|” 3
X
=27l rix — — | =27 - —
3 0
- %’777‘3

Figure 5 illustrates the definition of volume when the solid is a sphert
= 1. From the result of Example 1, we know that the volume of t
7 =~ 4.18879. Here the slabs are circular cylinders, or disks, and the three
ure 5 show the geometric interpretations of the Riemann sums

r
4
3

iA(?c,-) Ax = i (1> — x?) Ax

i=1 i=1

¥ Visual 6.2A shows an animation when n = 5, 10, and 20 if we choose the sample points x* to be the midpoi
of Figure 5. that as we increase the number of approximating cylinders, the correspond

sums become closer to the true volume.

(a) Using 5 disks, V= 4.2726 (b) Using 10 disks, V = 4.2097 (c) Using 20 disks, V = 4.1940

FIGURE 5 Approximating the volume of a sphere with radius 1

7 EXAMPLE 2 Find the volume of the solid obtained by rotating about the
region under the curve y = Vx from 0 to 1. Illustrate the definition of volun
ing a typical approximating cylinder.

SOLUTION The region is shown in Figure 6(a). If we rotate about the x-axis, w
solid shown in Figure 6(b). When we slice through the point x, we get a disl
\/; . The area of this cross-section is

Alx) = 7(vx ) = mx
and the volume of the approx'imating cylinder (a disk with thickness Ax) is

A(x) Ax = 7x Ax
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<onable answer in The solid lies between x = 0 and x = 1, so its volume is
ack on our work, let's

| 1
ion by a square with base 1 ! p _
’ﬁfwe rotate this square, V= fo A(x) dx = jo mxdx = 77'7 _ 7
radius 1, height 1, and )

4. We computed that the
thi . That seems
this volume . \/;

N

FIGURE 6 (@) (b) O
7 EXAMPLE 3 Find the volume of the solid obtained by rotating the region bounded by
y =x% y =8, and x = 0 about the y-axis.

SOLUTION The region is shown in Figure 7(a) and the resulting solid is shown in

Figure 7(b). Because the region is rotated about the y-axis, it makes sense to slice the
solid perpendicular to the y-axis and therefore to integrate with respect to y. If we slice
at height y, we get a circular disk with radius x, where x = {/}7 . So the area of a cross-
section through y is

40) = w5t = w37 = my®
and the volume of the approximating cylinder pictured in Figure 7(b) is
A(y) Ay = my* Ay

Since the solid lies between y = 0 and y = 8, its volume is

V= J:A()’) dy = f: my?Pdy = w[%ym]g =—

FIGURE 7 (a) ” (b) o
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EXAMPLE 4 The region % enclosed by the curves y = x and y = x is rotated aboug fhe
x-axis. Find the volume of the resulting solid. %

! SOLUTION The curves y = x and y = x* intersect at the points (0, 0) and (1, 1). The
between them, the solid of rotation; and a cross-section perpendicular to the X-axis g
shown in Figure 8. A cross-section in the plane P, has the shape of a washer (an
ring) with inner radius x* and outer radius x, so we find the cross-sectional area by
tracting the area of the inner circle from the area of the outer circle:

Ax) = 7x? — w(x?)? = w(x* — x*)

Therefore we have

x> L )
V=le()c)dx=f1 a(x? — xY)dx=m et =i
0 0 3 5 0
y )
i /4
(1,1)
y=x
y=x’
X R
/1(0,0) X 0 X
/
FIGURE 8 @) (b) © 4

EXAMPLE 5 Find the volume of the solid obtained by rotating the region in Example#
about the line y = 2. '

SOLUTION The solid and a cross-section are shown in Figure 9. Again the cross-section
a washer, but this time the inner radius is 2 — x and the outer radius is 2 — % 5

Em Visual 6.2B shows how solids of
revolution are formed.

FIGURE 9
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The cross-sectional area is
Alx) = (2 — x})? — (2 — x)’
and so the volume of S is

V= jol A(x) dx

wfo’ [(2 — x*)? — (2 — x]dx

Vo4 _ g2
7TJ.0 (x* — 5x? + 4x) dx

5 3 2 !
N Y
5 3 2

0

_ 87
15 =

The solids in Examples 1-5 are all called solids of revolution because they are obtained
by revolving a region about a line. In general, we calculate the volume of a solid of revo-
lution by using the basic defining formula

V= LbA(x)dx or V= LdA(y) dy

and we find the cross-sectional area A(x) or A(y) in one of the following ways:

« If the cross-section is a disk (as in Examples 1-3), we find the radius of the disk
(in terms of x or y) and use

A = m(radius)?

« If the cross-section is a washer (as in Examples 4 and 5), we find the inner .
radius r;, and outer radius o, from a sketch (as in Figures 8, 9, and 10) and
compute the area of the washer by subtracting the area of the inner disk from the
area of the outer disk:

A = 7 (outer radius)® — 7 (inner radius)

FIGURE 10

The next example gives a further jllustration of the procedure.
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EEd Visual 6.2C shows how the solid
in Figure 12 is generated.

FIGURE 12

Computer-generated picture
of the solid in Example 7

EXAMPLE 6 Find the volume of the solid obtained by rotating the region in Exam
about the line x = —1.

SOLUTION Figure 11 shows a horizontal cross-section. It is a washer with inner radiy
1 + y and outer radius 1 + \/y_ , so the cross-sectional area is

A(y) = mr(outer radius)’> — 7r(inner radius)*
= (1 +yf - (1 +y)

The volume is

1%

I
=] —
S
=
LN
&
I
3
S
—
=
+
5
N—

~
|
=
+
N
e
~N
S

FIGURE I

We now find the volumes of three solids that are not solids of revolution.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radius 1. Parallel cros
sections perpendicular to the base are equilateral triangles. Find the volume of the

SOLUTION Let’s take the circle to be x> + y? = 1. The solid, its base, and a typical
section at a distance x from the origin are shown in Figure 13.

A

(a) The solid (b) Its base

(c) A cross-sec

FIGURE 13
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Since B lies on the circle, we have y = 4/1 — x? and so the base of the triangle ABC
is |AB| = 24/1 — x2. Since the triangle is equilateral, we see from Figure 13(c) that its
height is ﬁ y= ﬁ J1 — x2. The cross-sectional area is therefore

AW =321 -3/T-x7=3(1-x)

and the volume of the solid is

V= j_l‘A(x)dx= f—llﬁ(l — x%)dx

=2f;ﬁ(1—x2)dx=2ﬁ[x—%3~] =i*3/i O

0

7 EXAMPLE 8 Find the volume of a pyramid whose base is a square with side L and
whose height is A.

SOLUTION We place the origin O at the vertex of the pyramid and the x-axis along its cen-
tral axis as in Figure 14. Any plane P, that passes through x and is perpendicular to the

x-axis intersects the pyramid in a square with side of length s, say. We can express s in

terms of x by observing from the similar triangles in Figure 15 that

s/2 S

L/2 L

~
h

and so s = Lx/h. [Another method is to observe that the line OP has slope L/(2h) and
5o its equation is y = Lx/(2h).] Thus the cross-sectional area is

2

Alx) = s* = sz
y y
} P
ls L
o xalL b
h
FIGURE 14 FIGURE |5
The pyramid lies between x = 0 and x = h, so its volume is
h W 2, x| Lh
———3 3 — TS e— —— — ese— D
Vv fo A(x) dx jl) 2 x“dx 3, 3

We didn’t need to place the vertex of the pyramid at the origin in Example 8.
We did so merely to make the equations simple. If, instead, we had placed the center of the
base at the origin and the vertex on the positive y-axis, as in Figure 16, you can verify that
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we would have obtained the integral
V= j (h ~ yPdy =

EXAMPLE 9 A wedge is cut out of a circular cylinder of radius 4 by two planes, Q
plane is perpendicular to the axis of the cylinder. The other intersects the first at an
of 30° along a diameter of the cylinder. Find the volume of the wedge.

SOLUTION If we place the x-axis along the diameter where the planes meet, then the
base of the solid is a semicircle with equation y = /16 — x2, =4 < x < 4. A crog
section perpendicular to the x-axis at a distance x from the origin is a triangle ABC,
as shown in Figure 17, whose base is y = /16 — x* and whose height is

|BC| = ytan 30° = /16 — x2/+/3. Thus the cross-sectional area is

16,= x?
A(x) = 34/16 — x? \/—\/ = 2 2\/—

and the volume is

16 —

V= jjAA(x) dx = j: 2\/—

5 1 x|
:\—/_—J 16—x)dx—\/3—|:16x—?]0

128

30° ——
A y 3.3
FIGURE 17 For another method see Exercise 64.
| 6.2 | EXERCISES
1-18 Find the volume of the solid obtained by rotating the region (9] y* =x, x =2y; about the y-axis

bounded by the given curves about the specified line. Sketch the

region, the solid, and a typical disk or washer.

lLy=2-3x,y=0x=1

2.y=l—x2,y=0;

.y=1/x,x=1,x=2,y=0;
V25 —x2, y=0,x=2, x=4;

x=2\/-,x=0,y=9

4.

8 y=1ix

y=

x=y—y,L x=0

3
x, y=x, x=0;

2 y=5—-x%

about the x-axis

about the y-axis

about the y-axis

about the x-axis 2

10. y=3x% x=2, y=0; about the y-axis

about the x-axis {E] y=x,y= \/;; about y = 1

12. y=x% y=4; abouty=4

about the x-axis 13. y=1+secx, y=3; abouty =1

about the x-axis 14 y=1/x* y=0,x=1,x=3; abouty=—1
15. x=y% x=1; aboutx =1
16. y=1x, y=+/x; aboutx=2

17. y=x% x=y% aboutx = —1

about the x-axis

18. y=x, y=0,x=2, x=4; aboutx=1




to the figure and find the volume generated by
region about the specified line.

iven
YA

0,1 B(1,1)

20. R, about OC
22. R, about BC
24. R, about OC

out AB 26. g‘lz about BC
out OA 28. R about OC
out AB 30. R; about BC

p, but do not evaluate, an integral for the volume of
' ained by rotating the region bounded by the given
out the specified line.

an’y, y=1, x=0; abouty =1

—2)* 8x —y=16; aboutx =10
,y=sinx, 0 sSx =<, abouty =1
D, y=sinx, 0 <x=<; abouty=—2
=1, x=23; aboutx= —2
Sx, y=2—cosx, 0 <x<2m; abouty = 4

> a graph to find approximate x-coordinates of the
approximately) the volume of the solid obtained by
t the x-axis the region bounded by these curves.
fl_-xzcosx, y=x*4+x+1

y=23x—x*

ersection of the given curves. Then use your calcula-

€ a computer algebra system to find the exact volume
the specified line.
’x, y=0,0<x<m; abouty=—1

¥
= 2x, y = xcos(mx/4); abouty =2

obtained by rotating the region bounded by the given

ich integral represents the volume of a solid. Describe

cos’x dx 42. Jj ydy
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wjol (y* — y*) dy 44, *n'J-Oﬁ/2 [ + cosx)* — 1*]dx

45. A CAT scan produces equally spaced cross-sectional views of
a human organ that provide information about the organ other-
wise obtained only by surgery. Suppose that a CAT scan of a
human liver shows cross-sections spaced 1.5 cm apart. The
liver is 15 cm long and the cross-sectional areas, in square
centimeters, are 0, 18, 58, 79, 94, 106, 117, 128, 63, 39, and
0. Use the Midpoint Rule to estimate the volume of the liver.

46. A log 10 m long is cut at 1-meter intervals and its cross-
sectional areas A (at a distance x from the end of the log) are
listed in the table. Use the Midpoint Rule with n = 5 to esti-
mate the volume of the log.

x (m) A (m?) x (m) A (m?)
0 0.68 6 0.53
1 0.65 7 0.55
2 0.64 8 0.52
3 0.61 9 0.50
4 0.58 10 0.48
5 0.59
L ]

47. (a) If the region shown in the figure is rotated about the
x-axis to form a solid, use the Midpoint Rule with n = 4
to estimate the volume of the solid.

D4

4

2 W \
7 \

0 2 4 6 8 10 x

(b) Estimate the volume if the region is rotated about the
y-axis. Again use the Midpoint Rule with n = 4.

[(15]48. (a) A model for the shape of a bird’s egg is obtained by
rotating about the x-axis the region under the graph of

fx) = (ax® + bx* + cx + d)y1 — x?

Use a CAS to find the volume of such an egg.
(b) For a Red-throated Loon, a = —0.06, b = 0.04, c = 0.1,
and d = 0.54. Graph f and find the volume of an egg of

this species.
49-61 Find the volume of the described solid S.
A right circular cone with height h and base radius r

50. A frustum of a right circular cone with height A, lower base
radius R, and top radius r
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A cap of a sphere with radius 7 and height

52. A frustum of a pyramid with square base of side b, square top
of side a, and height 4

b
What happens if @ = 2 What happens if a = 0?

53. A pyramid with height & and rectangular base with dimensions
b and 2b

54. A pyramid with height 4 and base an equilateral triangle with
side a (a tetrahedron)

55. A tetrahedron with three mutually perpendicular faces and
three mutually perpendicular edges with lengths 3 cm,
4 cm, and 5 cm

56. The base of S is a circular disk with radius r. Parallel cross-
sections perpendicular to the base are squares.

[57] The base of S is an elliptical region with boundary curve
p g
9x? + 4y? = 36. Cross-sections perpendicular to the x-axis
are isosceles right triangles with hypotenuse in the base.

58. The base of S is the triangular region with vertices (0, 0),
(1, 0), and (0, 1). Cross-sections perpendicular to the y-axis
are equilateral triangles.

59. The base of S is the same base as in Exercise 58, but cross-
sections perpendicular to the x-axis are squares.

60. The base of S is the region enclosed by the parabola
¥y =1 — x? and the x-axis. Cross-sections perpendicular to the
y-axis are squares.

61. The base of § is the same base as in Exercise 60, but cross-
sections perpendicular to the x-axis are isosceles triangles with
height equal to the base.

e

62. The base of S is a circular disk with radius r.

sections perpendicular to the base are isoscele
height  and unequal side in the base.

(a) Set up an integral for the volume of .

(b) By interpreting the integral as an area, fing

(a) Set up an integral for the volume of a solic

donut-shaped solid shown in the figure) wi
(b) By interpreting the integral as an area, find
the torus.

64. Solve Example 9 taking cross-sections to be pa

of intersection of the two planes.

65. (a) Cavalieri’s Principle states that if a family o

gives equal cross-sectional areas for two sol
then the volumes of $, and S, are equal. Pro

(b) Use Cavalieri’s Principle to find the volume
cylinder shown in the figure.

66. Find the volume common to two circular cylinde

radius r, if the axes of the cylinders intersect at r

Find the volume common to two spheres, each wi

68.

69.

the center of each sphere lies on the surface of the

A bowl is shaped like a hemisphere with diameter
heavy ball with diameter 10 cm is placed in the bc
is poured into the bowl to a depth of A centimeters

volume of water in the bowl.

A hole of radius r is bored through the middle of :
radius R > r at right angles to the axis of the cylir
but do not evaluate, an integral for the volume cut
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radius 7 iS bored through the center of a sphere of y =R — cx? —h/2 < x < h/2, where c is a positive con-
> . Find the volume of the remaining portion of the stant. Show that the radius of each end of the barrel is

r =R — d, where d = ch?/4.
(b) Show that the volume enclosed by the barrel is

g pioneers of calculus, such as Kepler and Newton, - 'rrh(2 R4 p2—2 dz)
g ed by the problem of finding the volumes of wine .
fact Kepler published a book Stereometria doliorum 72. Suppose that a region QR has area A and lies above the x-axis.
oted to methods for finding the volumes of barrels.) When @ is rotated about the x-axis, it sweeps out a solid with
approximated the shape of the sides by parabolas. volume V;. When @ is rotated about the line y = —k (where k
with height 7 and maximum radius R is con- is a positive number), it sweeps out a solid with volume V5.
by rotating about the x-axis the parabola Express V; in terms of Vi, k, and A.

6.3

VOLUMES BY CYLINDRICAL SHELLS

Ar

FIGURE 3

Some volume problems are very difficult to handle by the methods of the preceding sec-
tion. For instance, let’s consider the problem of finding the volume of the solid obtained
by rotating about the y-axis the region bounded by y = 2x* — x*and y = 0. (See Figure 1.)
If we slice perpendicular to the y-axis, we get a washer. But to compute the inner radius
and the outer radius of the washer, we would have to solve the cubic equation
y = 2x* — x> for x in terms of y; that’s not easy.

Fortunately, there is a method, called the method of cylindrical shells, that is easier to
use in such a case. Figure 2 shows a cylindrical shell with inner radius r1, outer radius 75,
and height k. Its volume V is calculated by subtracting the volume V; of the inner cylinder
from the volume V, of the outer cylinder:

V=V, -V, =marth — mrth = w(r} — ri)h

+
w(rs + r)(rs — r)h = 2wiz—’—‘ Bl ~ )

If we let Ar = r, — r, (the thickness of the shell) and r = 1(r, + r1) (the average radius
of the shell), then this formula for the volume of a cylindrical shell becomes

] V = 2arrh Ar

and it can be remembered as
V = [circumference] [height][thickness]

Now let S be the solid obtained by rotating about the y-axis the region bounded by
y = f(x) [where f(x) = 0],y = 0,x =a, and x = b, where b > a = 0. (See Figure 3.)
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FIGURE 4
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We divide the interval [a, b] into n subintervals [x;-1, x;] of equal width A
the midpoint of the ith subinterval. If the rectangle with base [x,-, x;] and
rotated about the y-axis, then the result is a cylindrical shell with average ra
f(%:), and thickness Ax (see Figure 4), so by Formula 1 its volume is

Vi= Qmx;)[f(x:)] Ax

X X Therefore an approximation to the volume V of S is given by the sum of tl

these shells:

B

M:r

Va2 Vi= 2 2ux,f(x;) Ax
1

1 i

I

This approximation appears to become better as n — %. And, from the definit
gral, we know that

lim i 27X f(x;) Ax = fb 27xf(x) dx

o
B ju

Thus the following appears plausible:

The volume of the solid in Figure 3, obtained by rotating about the -
region under the curve y = f(x) from a to b, is

V= jb 2mxf(x) dx where 0 < a < b

The argument using cylindrical shells makes Formula 2 seem reasonable
will be able to prove it (see Exercise 67 in Section 8.1).

The best way to remember Formula 2 is to think of a typical shell, cut an
in Figure 5, with radius x, circumference 27rx, height f(x), and thickness A>

[ em @) a

) =] | S
circumference  height  thickness

x 27X

FIGURE 5

This type of reasoning will be helpful in other situations, such as when wi
lines other than the y-axis.

EXAMPLE | Find the volume 'of the solid obtained by rotating about the y-ax
bounded by y = 2x* — x*and y = 0.

SOLUTION From the sketch in Figure 6 we see that a typical shell has radius x,
ence 2x, and height f(x) = 2x*> — x*. So, by the shell method, the volume
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V= f: 2mx)2x* = x¥) dx = 27TJ: (2x* — x*) dx
= onlixt ~ 1 = 20fs - )= 41

It can be verified that the shell method gives the same answer as slicing. |
2 x

computer-generated
d whose volume we computed
10

FIGURE 7

; Comparing the solution of Example 1 with the remarks at the beginning of this
s , section, we see that the method of cylindrical shells is much easier than the washer method
for this problem. We did not have to find the coordinates of the local maximum and we did

not have to solve the equation of the curve for x in terms of y. However, in other examples
the methods of the preceding section may be easier.

7 EXAMPLE 2 Find the volume of the solid obtained by rotating about the y-axis the
region between y = x and y = x2.

ol %
y =3 SOLUTION The region and a typical shell are shown in Figure 8. We see that the shell has
<hell radius x, circumference 27rx, and height x — x2 So the volume is
height = x — x?

X

W = L‘ Qmx)(x — x) dx = 2wf01 (x> — x*) dx

2 »*|' x
=9 == 2 | =2 O
W[?’ 4:|o )

As the following example shows, the shell method works just as well if we rotate about
the x-axis. We simply have to draw a diagram to identify the radius and height of a shell.

K7 EXAMPLE 3 Use cylindrical shells to find the volume of the solid obtained by rotating
height = 1 — , about the x-axis the region under the curve y = +/x from 0 to 1.

SOLUTION This problem was solved using disks in Example 2 in Section 6.2. To use shells
we relabel the curve y = \/x (in the figure in that example) as x = y? in Figure 9. For

rotation about the x-axis we see that a typical shell has radius ¥, circumference 27y, and
height 1 — y2 So the volume is

2

» | =
[ 2 _ e B — A S )
» ¥ fo Q2my)(1 — y?) dy 2wa (y = y7)dy 2?[ > 4 ]0 >

In this problem the disk method was, simpler. a
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2 EXAMPLE 4 Find the volume of the solid obtained by rotating the region boy;
y =x — x*and y = 0 about the line x = 2.

SOLUTION Figure 10 shows the region and a cylindrical shell formed by rotation ah
line x = 2. It has radius 2 — x, circumference 27(2 — x), and height x — x2,

y

y=x—x?

e N

FIGURE 10

=2 3

i
*—x—+—2‘x~+

The volume of the given solid is

V= fol 272 = x)(x — x})dx = ZWLI (x* = 3x* + 2x) dx

xt Yo
=2 — — x3 4+ x2| =—
77[4 X x] 5

0

6.3 | EXERCISES

I. Let S be the solid obtained by rotating the region shown in
the figure about the y-axis. Explain why it is awkward to use
slicing to find the volume V of S. Sketch a typical approxi-
mating shell. What are its circumference and height? Use shells
to find V.

y

y=x(x—1)>

0 1 x
2. Let S be the solid obtained by rotating the region shown in the
figure about the y-axis. Sketch a typical cylindrical shell and

find its circumference and height. Use shells to find the volume
of S. Do you think this method is preferable to slicing? Explain.

74

0

3-7 Use the method of cylindrical shells to find the volume gener-
ated by rotating the region bounded by the given curves about the
y-axis. Sketch the region and a typical shell.

.y=1/x, y=0, x=1, x=2

y=x% y=0, x=1
y=x° 0sx<2, y=4, x=0

y=3+2x—x% x+y=3

N ownoa

CYy=4x—-2)? y=x>—4x+7

8. Let V be the volume of the solid obtained by rotating a
y-axis the region bounded by y = /x and y = x2. Find
by slicing and by cylindrical shells. In both cases draw
gram to explain your method. '

9-14 Use the method of cylindrical shells to find the volun
solid obtained by rotating the region bounded by the given:
about the x-axis. Sketch the region and a typical shell.

9. x=1+y% x=0, y=1, y=2
IO.x=\/)_’, x=0, y=1
I.y=x% y=8, x=0

12. x=4y? —y3, x=0
Blx=1+(y—-2?% x=2

14. x+y=3, x=4—(y— 1)

15-20 Use the method of cylindrical shells to find the volti
erated by rotating the region bounded by the given curves al
specified axis. Sketch the region and a typical shell.

I5. y=x* y=0, x=1; aboutx =2




E y=0 x= 1; aboutx = —1
— x% y=23; aboutx =]
by =2 —x% aboutx =]
'y=0,x=1; abouty = 1

abouty = —|

up, but do not evaluate, an integral for the volume

obtained by rotating the region bounded by the given
it the specified axis.

x, y=0, x=2m x=37; about the y-axis
=d4x — x% aboutx =7
y = sin(wx/2); about x = —1
J1+x%),y=0,x=0, x=2: aboutx =2
1.;s;iny, Osysmx=0;

g Lox =4

about y = 4
abouty =5

e Midpoint Rule with n = 5 to estimate the volume

ed by rotating about the y-axis the region under the
=Vl +x3,0sx<1.

Aregion shown in the figure is rotated about the y-axis to
solid, use the Midpoint Rule with n = 5 to estimate
olume of the solid.

L HAEENENERNENE
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N
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integral represents the volume of a solid. Describe

B =1 - ) gy

T — x)(cos x — sin x) dx
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33-34 Use a graph to estimate the X-coordinates of the points of
intersection of the given curves. Then use this information and
your calculafor to estimate the volume of the solid obtained by
rotating about the y-axis the region enclosed by these curves.

33. y=0, y=x+4 x2— 3¢

4. y=x-x+1, y=—x*+4x-1

35-36 Use a computer algebra system to find the exact volume

of the solid obtained by rotating the region bounded by the given
curves about the specified line.

35 y =sin’x, y = sin‘x, 0 s x < 7; aboutx = 77/2

36. y =x’sinx, y =0, Osx<m; aboutx= —1]

37-42 The region bounded by the given curves is rotated about

the specified axis. Find the volume of the resulting solid by any
method.

37. y=—x>+6x— 8, y=0; about the y-axis
38. y=-x>+6x-8, y=0; about the x-axis
39. y=5,y=x>—5x+9; aboutx = —1

40. x=1-y* x=0; aboutx =2

x>+ (y = 1*=1; about the y-axis

Q2. x=(y—3P x=4; abouty = |

-_— O
43-45 Use cylindrical shells to find the volume of the solid.

43. A sphere of radius r

44. The solid torus of Exercise 63 in Section 6.2

A right circular cone with height / and base radius r

46. Suppose you make napkin rings by drilling holes with differ-
ent diameters through two wooden balls (which also have dif-
ferent diameters). You discover that both napkin rings have
the same height £, as shown in the figure.

(a) Guess which ring has more wood in it.

(b) Check your guess: Use cylindrical shells to compute the
volume of a napkin ring created by drilling a hole with
radius r through the center of a sphere of radius R and
express the answer in terms of /.

]
y .
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FIGURE 2

& If we had placed the origin at the bottom of
the cable and the x-axis upward, we would have

gotten
100

Ldni

which gives the same answer.

FIGURE 3

FIGURE 4

2(100 — x) dx

7 EXAMPLE 4 A 200-Ib cable is 100 ft long and hangs vertically from the top of g
building. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an
ment similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the x-axis pointing downwar,
in Figure 2. We divide the cable into small parts with length Ax. If x¥ is a point in ¢
ith such interval, then all points in the interval are lifted by approximately the same
amount, namely x;*. The cable weighs 2 pounds per foot, so the weight of the jth p:
2Ax. Thus the work done on the ith part, in foot-pounds, is

arg

2Ax) x¥ =2xFAx
force distance

We get the total work done by adding all these approximations and letting the ny
of parts become large (so Ax—0):

W= lim D, 2x*Ax = Joloo 2x dx
N =
100

= x2];"° = 10,000 ft-1b

EXAMPLE 5 A tank has the shape of an inverted circular cone with height 10 m and
radius 4 m. It is filled with water to a height of 8 m. Find the work required to empt
the tank by pumping all of the water to the top of the tank. (The density of water is
1000 kg/m>.)

SOLUTION Let’s measure depths from the top of the tank by introducing a vertical coor
nate line as in Figure 3. The water extends from a depth of 2 m to a depth of 10 m 2
so we divide the interval [2, 10] into n subintervals with endpoints xo, x1, . . . , x, anc
choose x/* in the ith subinterval. This divides the water into  layers. The ith layer s
approximated by a circular cylinder with radius r; and height Ax. We can compute 7,
from similar triangles, using Figure 4, as follows:

14 4 2

. N 1 — 210 - x*
10 - x* 10 (10— a7)

i =3
Thus an approximation to the volume of the ith layer of water is
2 4 *)2
V,'z Tr; AX:E(IO —x,») Ax

and so its mass is

m; = density X volume
47T *)2 *\2
~ 1000 - E(IO — x{)? Ax = 1607 (10 — x¥)* Ax

The force required to raise this layer must overcome the force of gravity and so
Fi = mg =~ (9.8)1607(10 — x})* Ax
~ 15707(10 — x¥)* Ax

Each particle in the layer must travel a distance of approximately x;*. The work W; dof
raise this layer to the top is approximately the product of the force F; and the distance

W; =~ Fixf = 1570mxF(10 — xF)? Ax



w

=% =g

Il

10 , , 20x°  x*|°
15707rL (100x = 20x* + 2°) dx = 1570w 502> = ==+ =~

15707(%52) ~ 3.4 x 10°]
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To find the total work done in emptying the entire tank, we add the contributions of each
of the n layers and then take the limit as n — oo

lim 3 15707x*(10 — x¥)* Ax = L“’ 1570mx (10 — x)* dx

EXERCISES

: work is done in lifting a 40-kg sandbag to a height
1?

e

e work done if a constant force of 100 Ib is used to pull

 distance of 200 ft.
is moved along the x-axis by a force that measures
’:,_“_x)z pounds at a point x feet from the origin. Find the

ne in moving the particle from the origin to a distance

particle is located a distance x meters from the origin,
e of cos(x/3) newtons acts on it. How much work is

ne in moving the particle from x = 1 to x = 2? Interpret

nswer by considering the work done from x = 1 to
and from x = 1.5tox = 2.

1 is the graph of a force function (in newtons) that

ses 10 its maximum value and then remains constant.
? ch work is done by the force in moving an object a
ce of 8 m?

1 23 456 78 x(m)

le shows values of a force function f(x), where x is
in meters and f(x) in newtons. Use the Midpoint
' estimate the work done by the force in moving an
om x = 4 to x = 20.

6 8 10 12 14 16 18 20

58 |1 70 | 88 | 9.6 82 | 67 | 52 | 41

0f 10 b is required to hold a spring stretched 4 in.
natural length. How much work is done in stretching
18 natura] length to 6 in. beyond its natural length?

‘_j‘has a natural length of If a 25-N force is
4 1o keep it stretched to a le;}glh of30 cm, how much

—

S fequired to stretch it from\"'20 cni to 25 cm?

Suppose that 2 J of work is needed to stretch a spring from its
natural length of 30 cm to a length of 42 cm.
(a) How much work is needed to stretch the spring from 35 cm
to 40 cm?
(b) How far beyond its natural length will a force of 30 N keep
the spring stretched?

(B.})If the work required to stretch a spring 1 ft beyond its natural
~ length is 12 ft-Ib, how much work is needed to stretch it ahY
beyond its natural length?

Il. A spring has natural length 20 cm. Compare the work W,
done in stretching the spring from 20 c¢m to 30 cm with the
work W, done in stretching it from 30 cm to 40 cm. How are
W, and W, related?

12. If 6 J of work is needed to stretch a spring from 10 cm to
12 cm and another 10 J is needed to stretch it from 12 cm
to 14 cm, what is the natural length of the spring?

13-20 Show how to approximate the required work by a Riemann
sum. Then express the work as an integral and evaluate it.

[I3] A heavy rope, 50 ft long, weighs 0.5 1b/ft and hangs over the
edge of a building 120 ft high.
(a) How much work is done in pulling the rope to the top of
the building?
(b) How much work is done in pulling half the rope to the top
of the building?

/

@ A chain lying on the ground is 10 m long and its mass is

— 80 kg. How much work is required to raise one end of the

chain to a height of 6 m?

I5. A cable that weighs 2 Ib/ft is used to lift 800 1b of coal up a
mine shaft 500 ft deep. Find the work done.

,-1 6.! A bucket that weighs 4 1b and a rope of negligible weight are
- used to draw water from a well that is 80 ft deep. The bucket
is filled with 40 Ib of water and is pulled up at a rate of 2 ft/s,
but water leaks out of a hole in the bucket at a rate of 0.2 Ib/s.
Find the work doqe in pulling the bucket to the top of the well.

A leaky 10-kg bucket is lifted from the ground to a height of
12 m at a constant speed with a rope that weighs 0.8 kg/m.
Initialdly the bucket contains 36 kg of water, but the water
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leaks at a constant rate and finishes draining just as the bucket 26. Solve Exercise 22 if the tank is half full of oil t
! reaches the 12 m level. How much work is done? sity of 900 kg/m?>.
i
] 18. A 10-ft cha.in \jve.ighs 25 1b and hangs from a ceiling. Fmd the 7] When gas expands in a cylinder with radius r. ¢
work done in lifting the lower end of the chain to the ceiling ; s ;
-, . any given time is a function of the volume: P =
so that its level with the upper end. force exerted by the gas on the piston (see the fi
(19] An aquarium 2 m long, 1 m wide, and 1 m deep is full of product of the pressure and the area: F = arP.
water. Find the work needed to pump half of the water out work done by the gas when the volume expands
of the aquarium. (Use the fact that the density of water is Vi to volume V; is

1000 kg /m?.)

:’?20.\} A circular swimming pool has a diameter of 24 ft, the sides
‘\;5# are 5 ft high, and the depth of the water is 4 ft. How much
work is required to pump all of the water out over the side?
(Use the fact that water weighs 62.5 1b/ft®.)

W= f:PdV

piston head

21-24 A tank is full of water. Find the work required to pump
the water out of the spout. In Exercises 23 and 24 use the fact that
water weighs 62.5 Ib/ft?,

21.

28. In a steam engine the pressure P and volume V 0
the equation PV'4 = k, where k is a constant. (T
adiabatic expansion, that is, expansion in which ¢
transfer between the cylinder and its surrounding
cise 27 to calculate the work done by the engine
when the steam starts at a pressure of 160 Ib/in?
of 100 in’ and expands to a volume of 800 in®,

22)

-3 m -

ey

-

29. Newton’s Law of Gravitation states that two bod
masses m; and m, attract each other with a force

23. 24.

mymy

r2

F=¢G

where r is the distance between the bodies and G
tational constant. If one of the bodies is fixed, fin
needed to move the other from r = g to r = b.

M0t

frustum of a cone

. Use Newton’s Law of Gravitation to compute the
required to launch a 1000-kg satellite vertically tc

1000 km high. You may assume that the earth’s n
25. Suppose that for the tank in Exercise 21 the pump breaks 5.98 X 10* kg and is concentrated at its center. ]

down after 4.7 X 10° J of work has been done. What is the radius of the earth to be 6.37 X 10 m and'
depth of the water remaining in the tank? G =6.67 X 107" N-m?/kg?.

3, 6.5 | AVERAGE VALUE OF A FUNCTION

T r It is easy to calculate the average value of finitely many numbers Vi Y2senns.
154 YI+}’2+"'+Yn
yave =
n
107
But how do we compute the average temperature during a day if infinitely ma
o \ ture readings are possible? Figure 1 shows the graph of a temperature function
6 / I Tave . . 0
- ; ; i A 1 1s measured in hours and 7 in °C, and a guess at the average temperature, T,
0 12 8 24 ! In general, let’s try to compute the average value of a function y = f(x),

We start by dividing the interval [a, b] into n equal subintervals, each 1

FIGURE | Ax = (b — a)/n. Then we choose points x{, ..., x¥ in successive subinterv:




ni:\,mction, we can think of this

= average height
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culate the average of the numbers f(x¥), ..., f(x}):

fGI) + -+ )

n

(For example, if f represents a temperature function and n = 24, this means that we take
temperature readings every hour and then average them.) Since Ax = (b — a)/n, we can
write n = (b — a)/Ax and the average value becomes

FO) + - G 1

b—a b =
Ax

P [f(x) Ax + -+ + f(xF) Ax]

=3 A
a =)

If we let n increase, we would be computing the average value of a large number of closely
spaced values. (For example, we would be averaging temperature readings taken every
minute or even every second.) The limiting value is

— 3 1) x = —— [* (2 d

b—aig

lim
n—w

by the definition of a definite integral.
Therefore we define the average value of f on the interval [a, b] as

1 b
j;ve = b— o .,.a f(x) dx

EXAMPLE | Find the average value of the function f(x) = 1 + x? on the interval [—1, 2].
SOLUTION With @ = —1 and b = 2 we have

1 1 > w1 il

ﬂve—mj;f(x)dx—mj_](l+x)dx—§|:x+?:|v]—2 O

If 7() is the temperature at time 7, we might wonder if there is a specific time when the

temperature is the same as the average temperature. For the temperature function graphed

in Figure 1, we see that there are two such times—just before noon and just before mid-

night. In general, is there a number ¢ at which the value of a function f is exactly equal to

the average value of the function, that is, f(c) = f.\.? The following theorem says that this
is true for continuous functions.

THE MEAN VALUE THEOREM FOR INTEGRALS If f is continuous on [a, b], then there
exists a number c in [a, b] such that

F(©) = fuve = b—i; [* @ dx

that is, Lb f(x)dx = f(c)(b — a)
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& You can always chop off the top of a (two-
dimensional) mountain at a certain height and
use it to fill in the valleys so that the mountaintop

becomes completely flat.

g

y=1+x2

2,9

favc: 2

(=12
| ; /:
| |
| |
| |
1

FIGURE 3

The Mean Value Theorem for Integrals is a consequence of the Mean Value The
for derivatives and the Fundamental Theorem of Calculus. The proof is outlined jp

cise 23.
The geometric interpretation of the Mean Value Theorem for Integrals is that, f;

tive functions f, there is a number c such that the rectangle with base [a, b] and hej
has the same area as the region under the graph of f from a to b. (See Figure 2
more picturesque interpretation in the margin note.)

¥

FIGURE 2

7 EXAMPLE 2 Since f(x) = 1 + x*is continuous on the interval [—1, 2], the Mean
Value Theorem for Integrals says there is a number ¢ in [—1, 2] such that

[7 0+ xdx=fN2 - (-]

In this particular case we can find c explicitly. From Example 1 we know that f,,. =
so the value of ¢ satisfies

fle) = foe =2

Therefore 1+c¢2=2 SO cr=1

So in this case there happen to be two numbers ¢ = *1 in the interval [—1, 2] that w&ﬁi

£

in the Mean Value Theorem for Integrals.

Examples 1 and 2 are illustrated by Figure 3.
7 EXAMPLE 3 Show that the average velocity of a car over a time interval (1, )0
same as the average of its velocities during the trip.

SOLUTION If s(¢) is the displacement of the car at time 7, then, by definition, the average
velocity of the car over the interval is

As _ s(n) = s@)
At th —

On the other hand, the average value of the velocity function on the interval is

Vave = : j,h o(f)dt = J.[' s'(f) dt

t, — 1 Jn 1, — 4L

1
-, [s(t2) — s(1)] (by the Net Change Theorem)
2~ U
s(t) — s(t) _, :
= —[——t—— = average velocity
2 3 |




*an Valye g
S outlineg ;

‘the average value of the function on the given interval,
s is that,. { ' — x2 [O 4]
b]andp g e

® Figure

@ f) =sindx, [-q 7]
4. g(x) =x2/T ¥ x3, [0,2]
W7, [0,5] 6. f(6) = sec¥(6/2), [o, /2]

cos’x sinx, [0, 7]
/(1 + % [1,6]

e average value of f on the given interval,
su h that f;ve =f(C)
the graph of f and a rectangle whose area is the same

], the

2sinx — sin 2x, [0, )
%2x/(1 + x2)2’ [O, 2]

that f,

the numbers b such that the average value of
=2+ 6x— 3x20pn the interval [0, b] is equal to 3,

able gives values of 3 continuous function, Use the Mid-
Rule to estimate the average value of f on [20, 50].

What time wag the instantaneous velocity equal to the
age velocity?
is

12 ¢ (seconds)

SECTION 6.5 AVERAGE vALUE OF A FUNCTION )

In a certain city the temperature (in °F) ¢ hours after 9 am
Was modeled by the function

T() = 50 + 14 sin %

Find the average temperature during the period from 9 am
to 9 pm.

The temperature of a meta] rod, 5 m long, is 4x (in °C) at a
distance x meters from one end of the rod. What is the aver-
age temperature of the rod?

19. The linear density in a rod 8 m long is 12/\/x + 1 kg/m,
where x is measured in meters from one end of the rod. Find
the average density of the rod.

20. Ifa freely falling body starts from rest, then jts displacement
is given by 5 = 291% Let the velocity after a time 7 pe vr.
Show that if we compute the average of the velocities with
Tespect to ¢ we get v,,, = %vr, but if we compute the average

of the velocities with Tespect to s we get y,,, = 2ur.

21. Use the result of Exercise 55 in Section 5.5 to compute the
average volume of inhaled air in the lungs in one respiratory

22, The velocity v of blood that flows in g blood vessel with
radius R and length / at a distance r from the central axis is

) = 5 @ = )

over the interval 0 < , < R. Compare the average velocity
with the maximum velocity.

23] Prove the Mean Value Theorem for Integrals by applying the
Mean Value Theorem for derivatives (see Section 4.2) to the
function F(x) = 2@ at.

24. If fie[a, b] denotes the average value of f on the interval
[a,b]and a < ¢ < b, show that

b-c¢
ave ’b
T foule, 8]

f;ve[‘h b] = Z_;Z f;ve[ay C] +
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6 REVIEW

CONCEPT CHECK

I. (a) Draw two typical curves y = f(x) and y = g(x), where
f(x) = g(x) for a < x < b. Show how to approximate the
area between these curves by a Riemann sum and sketch
the corresponding approximating rectangles. Then write an
expression for the exact area.

(b) Explain how the situation changes if the curves have

equations x = f(y) and x = g(y), where f(y) = g(y)
forc<y=<d.

2. Suppose that Sue runs faster than Kathy throughout a
1500-meter race. What is the physical meaning of the area
between their velocity curves for the first minute of the race?

3. (a) Suppose S is a solid with known cross-sectional areas.
Explain how to approximate the volume of S by a Riemann
sum. Then write an expression for the exact volume.

(b) If S is a solid of revolution, how do you find the CW
sectional areas?

4. (a) What is the volume of a cylindrical shell?
(b) Explain how to use cylindrical shells to find the VOlm;;i

a solid of revolution. :

(c) Why might you want to use the shell method j lnSteadd
slicing?

5. Suppose that you push a book across a 6~ -meter-long lablel
exertmg a force f(x) at each point from x = 0 to x = 6. W
does | 8 F(x) dx represent? If f(x) is measured in newtons v
are the units for the integral?

6. (a) What is the average value of a function f on an
interval [a, b]?
(b) What does the Mean Value Theorem for Integrals say?
What is its geometric interpretation?

EXERCISES

I-6 Find the area of the region bounded by the given curves.
l.y=x% y=4x—x?

2.y=20-x% y=x*-12

3.y=1-2x% y=|x|

4. x+y=0, x=y>+3y

5. y =sin(wx/2), y=x?-2x

6.y=\/;, y=x) x=2

7-11 Find the volume of the solid obtained by rotating the region
bounded by the given curves about the specified axis.

7. y=2x, y =x% about the x-axis

8. x=1+y% y=x—3; aboutthe y-axis
9. x=0,x=9—y% aboutx = —1

10 y=x>+1, y=9 — x% abouty= —1

. x*—y>=a% x=a+ h (wherea > 0, h > 0);
about the y-axis

12-14 Set up, but do not evaluate, an integral for the volume of the
solid obtained by rotating the region bounded by the given curves
about the specified axis.

12. y =tanx, y =x, x = m/3; about the y-axis
13. y =cos’x, |x| < 7/2, y=1 aboutx = m/2

14. y = x, y=x% abouty =2

I5. Find the volumes of the solids obtained by rotating the Tegi
bounded by the curves y = x and y = x? about the followip
lines.

(a) The x-axis (b) The y-axis (c)y=2

16. Let R be the region in the first quadrant bounded by the cun
y =x"and y = 2x — x°. Calculate the following quantities
(a) The area of R
(b) The volume obtained by rotating R about the x-axis
(c) The volume obtained by rotating R about the y-axis

17. Let %R be the region bounded by the curves y = tan(x?),
x =1, and y = 0. Use the Midpoint Rule with n = 4 toesl
mate the following quantities.

(a) The area of R :
(b) The volume obtained by rotating % about the x-axis =

F18. Let % be the region bounded by the curves y = 1 — x*and
y = x® — x + 1. Estimate the following quantities.
(a) The x-coordinates of the points of intersection of the cmg
(b) The area of R
(c) The volume generated when R is rotated about the Iﬂi‘
(d) The volume generated when QR is rotated about the

19-22 Each integral represents the volume of a solid. Des
solid.

19. J.Oﬂ/z 27x cos x dx 20. foﬂ/z 271 cos’x dx

At

21. fo” 72 — sinx)?dx 22 jo“ 27(6 — y)(dy — y)d.
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ofasolidis a circular disk with radius 3. Find the (a) If its height is 4 ft and the radius at the top is 4 ft, find the
- the solid if parallel cross-sections perpendicular to work required to pump the water out of the tank.
are isosceles right triangles with hypotenuse lying (b) After 4000 ft-1b of work has been done, what is the depth

e base. of the water remaining in the tank?

a solid is the region bounded by the parabolas
- x2. Find the volume of the solid if the
ons perpendicular to the x-axis are squares with

g along the base.

f 2 monument is 20 m. A horizontal cross-section

ce x meters from the top is an equilateral triangle
+ meters. Find the volume of the monument.

e of a solid is a square with vertices located at
(0, 1), (—1,0), and (0, —1). Each cross-section per- 30. Find the average value of the function f(¢) = ¢ sin(¢?) on the
cular to the x-axis is a semicircle. Find the volume interval [0, 10].

solid.
that by cutting the solid of part (a), we can rearrange 31. If f is a continuous function, what is the limit as 7 — 0 of

rm a cone. Thus compute its volume more simply. the average value of f on the interval [x, x + h]?

30 N is required to maintain a spring stretched 32. Let R, be the region bounded by y = x% y = 0, and x = b,

atural length of 12 cm to a length of 15 cm. How where b > 0. Let R, be the region bounded by y = x°,
ork is done in stretching the spring from 12 cm x=0,and y = b%
m? (a) Is there a value of b such that R, and R, have the same

area?
(b) Is there a value of b such that R, sweeps out the same
volume when rotated about the x-axis and the y-axis?
(c) Is there a value of b such that %, and R, sweep out the
ik full of water has the shape of a paraboloid of revolu- same volume when rotated about the x-axis?
own in the figure; that is, its shape is obtained by (d) Is there a value of b such that %R, and R, sweep out the
2 a parabola about a vertical axis. same volume when rotated about the y-axis?

b elevator is suspended by a 200-ft cable that weighs
. How much work is required to raise the elevator
e basement to the third floor, a distance of 30 ft?



PROBLEMSPLUS‘ ,-‘f.'wﬁ  'u‘ -

at the area under the graph of f from ()

1. (a) Find a positive continuous function f such th
is A(f) = t* forall t > 0.

(b) A solid is generated by rotating about the x-axis the region under the curve y = f( \
where f is a positive function and x = 0. The volume generated by the part of the g
fromx=0tox=">bis b2 for all b > 0. Find the function f. ’

2. There is a line through the origin that divides the region bounded by the parabola y = ;
] area. What is the slope of that line?

and the x-axis into two regions with equa
3. The figure shows a horizontal line y = ¢ intersecting the curve y = 8x — 27x°. Findtﬁ
ber ¢ such that the areas of the shaded regions are equal.

4. A cylindrical glass of radius and height L is filled with water and then tilted until the

remaining in the glass exactly covers its base.

(a) Determine a way to “glice” the water into parallel rectangular cross-sections and th
set up a definite integral for the volume of the water in the glass.

(b) Determine a way to “slice” the water into parallel cross-sections that are trapezoids ¢

then set up a definite integral for the volume of the water.

(c) Find the volume of water in the glass by evaluating one of the integrals in part (a)

FIGURE FOR PROBLEM 3 part (b).
(d) Find the volume of the wate

(e) Suppose the glass is tilted until the w

can you “slice” the water into triangu

Cross-sections that are segments of circle

¢ in the glass from purely geometric considerations.
ater exactly covers half the base. In what dire
lar cross-sections? Rectangular cross-sections?
7 Find the volume of water in the glass.

5. (a) Show that the volume of a segment of height i of a sphere of radius r is

4
2o ! 2
v =1ah*Gr —h)

from the cent

radius 1 is sliced by a plane at a distance x
f the other, thel

7 o
- (b) Show that if a sphere of
lume of one segment is twice the volume o

in such a way that the vo
x is a solution of the equation

3P —9x+2=0

s method to find x accurate (o four decimal places-

¢ of a segment of a sphere, it can be shown that th
r is a root of the equatid

where 0 < x < 1. Use Newton’

(c) Using the formula for the volum
depth x to which a floating sphere of radius 7 sinks in wate

FIGURE FOR PROBLEM 5

=3t +4r’s=0

ere. Suppose a wooden sphere of radius 024

where s is the specific gravity of the sph .
the depth to whi¢

specific gravity 0.75. Calculate, fo four-decimal-place accuracy,

sphere will sink.
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(d) A hemispherical bowl has radius 5 inches and water is running into the bowl at the rate of
0.2 in/s.

(i) How fast is the water level in the bowl rising at the instant the water is 3 inches deep?

(i) At a certain instant, the water is 4 inches deep. How long will it take to fill the bowl?

Archimedes’ Principle states that the buoyant force on an object partially or fully submerged
in a fluid is equal to the weight of the fluid that the object displaces. Thus, for an object of
density po floating partly submerged in a fluid of density py, the buoyant force is given by

F = psg [°, A(y) dy, where g is the acceleration due to gravity and A(y) is the area of a typi-
cal cross-section of the object. The weight of the object is given by

L-h
W = pog f_h A(y) dy

(a) Show that the percentage of the volume of the object above the surface of the liquid is

Psr— Po
ps

100

(b) The density of ice is 917 kg/m’ and the density of seawater is 1030 kg/m’. What percent-
age of the volume of an iceberg is above water?

(¢) An ice cube floats in a glass filled to the brim with water. Does the water overflow when
the ice melts?

(d) A sphere of radius 0.4 m and having negligible weight is floating in a large freshwater
lake. How much work is required to completely submerge the sphere? The density of the
water is 1000 kg/m’.

Water in an open bowl evaporates at a rate proportional to the area of the surface of the water.
(This means that the rate of decrease of the volume is proportional to the area of the surface.)
Show that the depth of the water decreases at a constant rate, regardless of the shape of the
bowl.

A sphere of radius 1 overlaps a smaller sphere of radius r in such a way that their intersection
is a circle of radius 7. (In other words, they intersect in a great circle of the small sphere.)
Find r so that the volume inside the small sphere and outside the large sphere is as large as
possible.

The figure shows a curve C with the property that, for every point P on the middle curve
y = 2x?, the areas A and B are equal. Find an equation for C.

A paper drinking cup filled with water has the shape of a cone with height 4 and semivertical -
angle 6 (see the figure). A ball is placed carefully in the cup, thereby displacing some of the
water and making it overflow. What is the radius of the ball that causes the greatest volume of
water to spill out of the cup?
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FIGURE FOR PROBLEM 12
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Il. A clepsydra, or water clock, is a glass container with a small hole in the bottom thy,
which water can flow. The “clock” is calibrated for measuring time by placing mark;
the container corresponding to water levels at equally spaced times. Let x = f(y) pa
ous on the interval [0, b] and assume that the container is formed by rotating the gra
about the y-axis. Let V denote the volume of water and & the height of the water leye]
(a) Determine V as a function of 4.
(b) Show that

av L dh
= = TUWr—

(c) Suppose that A is the area of the hole in the bottom of the container. It follows
Torricelli’s Law that the rate of change of the volume of the water is given by

dv
& = kavh

where k is a negative constant. Determine a formula for the function f such that dh
constant C. What is the advantage in having dh /dt =

12. A cylindrical container of radius r and height L is partially filled with a liquid whose ¥
is V. If the container is rotated about its axis of symmetry with constant angular speed
the container will induce a rotational motion in the liquid around the same axis. Event
the liquid will be rotating at the same angular speed as the container. The surface of th
will be convex, as indicated in the figure, because the centrifugal force on the liquid pa
increases with the distance from the axis of the container. It can be shown that the surfé
the liquid is a paraboloid of revolution generated by rotating the parabola

y=h+ 29
about the y-axis, where g is the acceleration due to gravity.
(a) Determine 4 as a function of w.

(b) At what angular speed will the surface of the liquid touch the bottom? At what Spe
it spill over the top?

(¢) Suppose the radius of the container is 2 ft, the height is 7 ft, and the container and
are rotating at the same constant angular speed. At the central axis the surface of
is 5 ft below the top of the tank, and 1 ft out from the central axis the surface is 4]
the top of the tank.
(i) Determine the angular speed of the container and the volume of the fluid.
(ii) How far below the top of the tank is the liquid at the wall of the container?

13. Suppose the graph of a cubic polynomial intersects the parabola y = x* when x = 073‘ :
and x = b, where 0 < a < b. If the two regions between the curves have the same arc
is b related to a? :
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14. Suppose we are planning to make a taco from-a round tortilla with diameter 8 inches by bend-
ing the tortilla so that it is shaped as if it is partially wrapped around a circular cylinder. We
will fill the tortilla to the edge (but no more) with meat, cheese, and other ingredients. Our
problem is to decide how to curve the tortilla in order to maximize the volume of food it can
hold.

(a) We start by placing a circular cylinder of radius r along a diameter of the tortilla and
folding the tortilla around the cylinder. Let x represent the distance from the center of the
tortilla to a point P on the diameter (see the figure). Show that the cross-sectional area of
the filled taco in the plane through P perpendicular to the axis of the cylinder is

2
A(x) = ry/16 — x2 — 31° sin(-r— V16 — x2>

and write an expression for the volume of the filled taco.
(b) Determine (approximately) the value of r that maximizes the volume of the taco. (Use a
graphical approach with your CAS.)

15. If the tangent at a point P on the curve y = x3 intersects the curve again at O, let A be the
area of the region bounded by the curve and the line segment PQ. Let B be the area of the
region defined in the same way starting with Q instead of P. What is the relationship between
A and B?




