INTEGRALS : 7

To compute an area we approximate a region by rectangles
and let the number of rectangles become large. The precise
area is the limit of these sums of areas of rectangles.

In Chapter 3 we used the tangent and velocity problems to introduce the derivative,
which is the central idea in differential calculus. In much the same way, this chapter
starts with the area and distance problems and uses them to formulate the idea of a
definite integral, which is the basic concept of integral calculus. We will see in
Chapters 6 and 9 how to use the integral to solve problems concerning volumes, lengths
of curves, population predictions, cardiac output, forces on a dam, work, consumer
surplus, and baseball, among many others.

There is a connection between integral calculus and differential calculus. The Funda-
mental Theorem of Calculus relates the integral to the derivative, and we will see in this
chapter that it greatly simplifies the solution of many problems.
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10 read (or reread) In this section we discover that in trying to find the area under a curve or the distance

page 2). Itdiscusses  traveled by a car, we end up with the same special type of limit.

Jiculus and helps put in

ave been and where we
THE AREA PROBLEM

We begin by attempting to solve the area problem: Find the area of the region S that lies
under the curve y = f(x) from a to b. This means that S, illustrated in Figure 1, is bounded
by the graph of a continuous function f [where f (x) = 0], the vertical lines x = a and
x = b, and the x-axis.

FIGURE | 0
1asxsb,0s):sf(x)}

1NY
S
=

In trying to solve the area problem we have to ask ourselves: What is the meaning of
the word area? This question is easy to answer for regions with straight sides. For a rect-
angle, the area is defined as the product of the length and the width. The area of a triangle
is half the base times the height. The area of a polygon is found by dividing it into tri-
angles (as in Figure 2) and adding the areas of the triangles.
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However, it isn’t so easy to find the area of a region with curved sides. We all have an”
intuitive idea of what the area of a region is. But part of the area problem is to make this
intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line by
slopes of secant lines and then we took the limit of these approximations. We pursue a sim-
2 ilar idea for areas. We first approximate the region S by rectangles and then we take the
limit of the areas of these rectangles as we increase the number of rectangles. The follow-
ing example illustrates the procedure.

(L1

EXAMPLE | Use rectangles to estimate the area under the parabola y = x* from 0 to 1
> (the parabolic region S illustrated in Figure 3).

SOLUTION We first notice that the area of S must be somewhere between 0 and 1 because
S is contained in a square with side length 1, but we can certainly do better than that.
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Suppose we divide S into four strips S, Sz, Ss, and Ss by drawing the vertical lineg y it
x= %, and x = 3 as in Figure 4(a).
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FIGURE 4 (a) (b)

We can approximate each strip by a rectangle whose base is the same as the strip
whose height is the same as the right edge of the strip [see Figure 4(b)] In other w
the heights of these rectangles are the values of the function f(x) = x? at the right end
points of the subintervals [0, ] [%, %] [2, ;] and [ 1]

Each rectangle has width } and the heights are ( 4) , (%)2, (%)2, and 1% If we let Reb
the sum of the areas of these approximating rectangles, we get

Ro=5(F +5-GF +3- (3 +34- 17 =5 = 046875

4

From Figure 4(b) we see that the area A of S is less than Ry, so
A < 0.46875

Instead of using the rectangles in Figure 4(b) we could use the smaller rectangles

y
/(1,1) Figure 5 whose heights are the values of f at the left endpoints of the subintervals. (The
=2 / leftmost rectangle has collapsed because its height is 0.) The sum of the areas of these
8 / approximating rectangles is
/
Lo=5- 0245 (3 + 5+ (GF +5- () =35 = 021875
We see that the area of S is larger than L4, so we have lower and upper estimates fi
I
o 2 3 § 1 ¥ 021875 < A < 0.46875
FIGURE 5 We can repeat this procedure with a larger number of strips. Figure 6 shows wil

happens when we divide the region S into eight strips of equal width.
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FIGURE 6

Approximating S with eight rectangles (a) Using left endpoints : (b) Using right endpoints



Rn

0.3850000
0.3587500
0.3501852
0.3434000
0.3383500

0.3338335

7 1,1)

quences were discussed in
s and will be studied in

Jimits at infinity (Section 4.4). In
that
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By computing the sum of the areas of the smaller rectangles (Lg) and the sum of the
areas of the larger rectangles (Rs), we obtain better lower and upper estimates for A:

0.2734375 < A < 0.3984375

So one possible answer to the question is to say that the true area of S lies somewhere
between 0.2734375 and 0.3984375.

We could obtain better estimates by increasing the number of strips. The table at the
left shows the results of similar calculations (with a computer) using n rectangles whose
heights are found with left endpoints (L,) or right endpoints (R,). In particular, we see
by using 50 strips that the area lies between 0.3234 and 0.3434. With 1000 strips we
narrow it down even more: A lies between 0.3328335 and 0.3338335. A good estimate is
obtained by averaging these numbers: A = 0.3333335. O

From the values in the table in Example 1, it looks as if R, is approaching 3 as n
increases. We confirm this in the next example.

7 EXAMPLE 2 For the region S in Example 1, show that the sum of the areas of the
upper approximating rectangles approaches 3, that is,

lim R, =3
SOLUTION R, is the sum of the areas of the n rectangles in Figure 7. Each rectangle

has width 1/n and the heights are the values of the function f(x) = x? at the points
1/n,2/n,3/n, ..., n/n; that is, the heights are (1/n)%, (2/n)%, (3/n)?, ..., (n/n)* Thus

1 (1)2 1 <2>2 1 (3)2 1 <n>2
P p—s +— prtiet +_ ——— +...+_ —
n n n n n n n n

.

I’l2

R, =

:l)—-

(12+224+32+--- +n?)
1 2 2 2 2
=—=(12+2*+32+ .- +1n?)
n

Here we need the formula for the sum of the squares of the first n positive integers:'

nin+ 1)2n + 1)
6

1] 24+22+324+ .-+ n2=

Perhaps you have seen this formula before. It is proved in Example 5 in Appendix E.
Putting Formula 1 into our expression for R,, we get

R 1 nn + 1)2n + 1) _ n+1D2n+1)
" oon? 6 6n?

Thus we have

(n+1)(2n+1)_1_m1 n+1\[2n+1
n—w 6n? e 6 n n

lim R, = lim
1 1 1 1 1
= lim — A — +—)=—=-1-2=— O
}1_{26<1 n)(z n)‘ 6 3

n—ow
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It can be shown that the lower approximating sums also approach 3, that is,

. 1
lim L,, =3

. n—®

From Figures 8 and 9 it appears that, as n increases, both L, and R, become better 3
ter approximations to the area of S. Therefore, we define the area A to be the limi
sums of the areas of the approximating rectangles, that is,

EEEE InVisual 5.1 you can create pic- 1 _ 1 _ 1

tures like those in Figures 8 and 9 for A= }141-:[010 R, = 31_{11 L,= 3

other values of 7.

1

b Y 7
A
n=10 R,;=0.385 7 n=30 Ry =0.3502 / n=50 Rs,=0.3434 7;;

0 1 X 0 1 X 0 1
FIGURE 8
) ) / Y4 4
n=10 L,=0.285 Zi n=30 Ly~ 0.3169 f n=350 Lg=0.3234 /
Z ZZ /lz
4 y
/ A
0 | x 0 T x 0 1
FIGURE 9 :
glhe arﬁa is the ““mberdli‘a‘ is S’;‘a“er Let’s apply the idea of Examples 1 and 2 to the more general region S of Figures
an all upper sums and larger t T . . . . . .
all lower E Ems ger tan start by subdividing S into n strips Si, S, . . . , S, of equal width as in Figure 10.
y L

FIGURE 10 b
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The width of the interval [a, b]is b — a, so the width of each of the n strips is

b—a
n

Ax =

These strips divide the interval [a, b] into n subintervals
[x0, x1], [xnx2], [x2,%3), ..o [%n-1,%a]
where xo = a and x, = b. The right endpoints of the subintervals are

x1 =a + Ax,
X, =a + 2Ax,

x3=a + 3Ax,

Let’s approximate the ith strip S; by a rectangle with width Ax and height f(x;), which
is the value of f at the right endpoint (see Figure 11). Then the area of the ith rectangle is
f(x;) Ax. What we think of intuitively as the area of S is approximated by the sum of the
areas of these rectangles, which is

R, = f(x1) Ax + f(x2) Ax + - - - + f(x,) Ax

Ax

FIGURE 11

Figure 12 shows this approximation for n = 2, 4, 8, and 12. Notice that this approxi-
mation appears to become better and better as the number of strips increases, that is, as
n — o, Therefore we define the area A of the region S in the following way.

\ XL7

(byn=4 (c)n=28 ¥ (dyn=12
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This tellsus to

endwithi=n. | instance,

This tells us < n

oad - DSwax $ f() Ax = fx0) Ax -+ f0xz) Bx + -+ + f(x,) Ax
i=m i=1

This tells us to I

start with i = m.

u If you need practice with sigma notation, look R . .
at the examples and try some of the exercises in A = lim Ef(-xz) Ax A= ’llim Ef(xi~]) Ax A = lim Ef(x.*) Ax
=% =1

Appendix E.

[2] DEFINITION The area A of the region S that lies under the graph of the g
wous function f is the limit of the sum of the areas of approximating rectang '

A=IlmR,= 'lli_r)r;[f(xl)Ax + () Ax + +++ + fl(x,) Ax]

n—o

It can be proved that the limit in Definition 2 always exists, since we are assun
f is continuous. It can also be shown that we get the same value if we use left eng

A=limL, = lim [ f(xo) Ax + f(x) Ax + + - + f(xp-1) Ax]

In fact, instead of using left endpoints or right endpoints, we could take the heigh
ith rectangle to be the value of f at any number x¥ in the ith subinterval [x;-, x;].
the numbers x¥, x¥, . . ., xif the sample points. Figure 13 shows approximating re
when the sample points are not chosen to be endpoints. So a more general expression fofd
area of S is .

=n1i_r)relc[f(xi")Ax+f(Xz*)Ax+---+f(xf)Ax]
y
Ax
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FIGURE 13 x’lk x’; x’; x?‘ x:‘

We often use sigma notation to write sums with many terms more compaCﬂ, .

So the expressions for area in Equations 2, 3, and 4 can be written as follows:

n—® ;1 n—® j_|

We can also rewrite Formula 1 in the following way:

. n(n + 1)2n + 1)

1 6

n
i=




N

5

SECTION 5.1 AREAS AND DISTANCES [||| 295

EXAMPLE 3 Let A be the area of the region that lies under the graph of f(x) = cos x
between x = 0 and x = b, where 0 < b < 7/2.

(a) Using right endpoints, find an expression for A as a limit. Do not evaluate the limit.
(b) Estimate the area for the case b = /2 by taking the sample points to be midpoints
and using four subintervals.

SOLUTION
(a) Since a = 0, the width of a subinterval is

Ax: =
n

b-0 b
n

So x; = b/n, x, = 2b/n, x3 = 3b/n, x; = ib/n, and x, = nb/n. The sum of the areas of
the approximating rectangles is

R, = f(x1) Ax + f(x2) Ax + - -+ + f(x,) Ax

= (cos x;) Ax + (cos x;) Ax + -+ + (cos x,) Ax

( b)b ( 2b)b < nb)b
=lcos—]—+{cos— |—F s+ [ cos— | —
n n n n n n

According to Definition 2, the area is

. . b b 2b 3b nb
A=1lmR,=1lim—|cos—+cos— +cos— + +-- + cos—
n n n n

n—o n—w N

Using sigma notation we could write
b & ib
A = lim — ), cos 2,
n—® N n
It is very difficult to evaluate this limit directly by hand, but with the aid of a computer
algebra system it isn’t hard (see Exercise 25). In Section 5.3 we will be able to find A
more easily using a different method. )
(b) With n = 4 and b = /2 we have Ax = (7/2)/4 = 7/8, so the subintervals are
[0, 7/8], [#/8, m/4], [7/4, 3m/8], and [37/8, mr/2]. The midpoints of these subintervals
are
vk

16

T 37 S5
xf=— xf=— X3

16 16 16

xf =

and the sum of the areas of the four approximating rectangles (see Figure 14) is

M, = if(xi*) Ax

= f(mw/16) Ax + f(3m/16) Ax + f(57/16) Ax + f(7m/16) Ax

= cosl -ZT-+ cos—32 1+ cosS—Tr 1+ cos7—7T .
16/ 8 16 ) 8 16 / 8 16 ) 8

K K 37 5, T
A' ~ J
= ‘_8 <COS _16 + cos _16 + cos _1 + cos 16) ~ 1.006
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So an estimate for the area is

A = 1.006

THE DISTANCE PROBLEM

Now let’s consider the distance problem: Find the distance traveled by an object durig
certain time period if the velocity of the object is known at all times. (In a sense this i
inverse problem of the velocity problem that we discussed in Section 2.1.) If the velog
remains constant, then the distance problem is easy to solve by means of the formuly

distance = velocity X time

But if the velocity varies, it’s not so easy to find the distance traveled. We investigazg%
problem in the following example. o

i7 EXAMPLE 4 Suppose the odometer on our car is broken and we want to estimate the
distance driven over a 30-second time interval. We take speedometer readings every fiy
seconds and record them in the following table:

Time (s) ol 5|10 20 | 25 | 30

29 | 32| 31 | 28

[
:
Velocity (mi/h) ‘ 17

In order to have the time and the velocity in consistent units, let’s convert the velocity
readings to feet per second (1 mi/h = 5280/3600 ft/s):

Time (s) | 0 | 5] 10
| Velocity (ft/s) \

20 | 25 | 30 |
| |

T
|
|
|
T

] - |
47 | 46 ‘ 41

15 ’
\
‘ |

| _ .
25 | 31 | 35 | 43
| |

During the first five seconds the velocity doesn’t change very much, so we can estima
the distance traveled during that time by assuming that the velocity is constant. If we
take the velocity during that time interval to be the initial velocity (25 ft/s), then we
obtain the approximate distance traveled during the first five seconds:

25 ft/s X 5s = 125 ft

Similarly, during the second time interval the velocity is approximately constant and ¥
take it to be the velocity when t = 5 s. So our estimate for the distance traveled from
t=>5stot=1081s

31 ft/s X 5s = 155 ft

If we add similar estimates for the other time intervals, we obtain an estimate for the
total distance traveled: '

(25><5)+(31><5)+(35><5)+(43><5)+(47><5)+(46><5)=1135,‘
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We could just as well have used the velocity at the end of each time period instead
of the velocity at the beginning as our assumed constant velocity. Then our estimate
becomes

(31 X 5)+ (35X 5)+ (43 X 5) + (47 X 5) + (46 X 5) + (41 X 5) = 1215 ft

If we had wanted a more accurate estimate; we could have taken velocity readings
every two seconds, or even every second. O

Perhaps the calculations in Example 4 remind you of the sums we used earlier to esti-
mate areas. The similarity is explained when we sketch a graph of the velocity function of
the car in Figure 15 and draw rectangles whose heights are the initial velocities for each
time interval. The area of the first rectangle is 25 X 5 = 125, which is also our estimate
for the distance traveled in the first five seconds. In fact, the area of each rectangle can be
interpreted as a distance because the height represents velocity and the width represents
time. The sum of the areas of the rectangles in Figure 15 is Ls = 1135, which is our ini-
tial estimate for the total distance traveled.

In general, suppose an object moves with velocity v = f(f), where a < ¢t < b and
(1) = 0 (so the object always moves in the positive direction). We take velocity readings
at times fo (= a), 1, t, . . ., I, (= b) so that the velocity is approximately constant on each
subinterval. If these times are equally spaced, then the time between consecutive readings
is At = (b — a)/n. During the first time interval the velocity is approximately f(,) and so
‘the distance traveled is approximately f(f) Az. Similarly, the distance traveled during the
second time interval is about f(#;) At and the total distance traveled during the time inter-
val [a, b] is approximately

fto) At + f(t1) At + -+« + f(tp-1) At = if(t,-_l)At
i=1

If we use the velocity at right endpoints instead of left endpoints, our estimate for the total
distance becomes

ft) At + f(t) At + -+ - + f(t,) At = _}n‘,f(t,») At

The more frequently we measure the velocity, the more accurate our estimates become, so
it seems plausible that the exact distance d traveled is the limit of such expressions:

[5] d = lim X, f(t—) At = lim X, f(t;) At
e =1 e =1

We will see in Section 5.4 that this is indeed true.

Because Equation 5 has the same form as our expressions for area in Equations 2 and
3, it follows that the distance traveled is equal to the area under the graph of the velocity
function. In Chapters 6 and 9 we will see that other quantities of interest in the natural and
social sciences—such as the work done by a variable force or the cardiac output of the
heart—can also be interpreted as the area under a curve. So when we compute areas in this
chapter, bear in mind that they can be interpreted in a variety of practical ways.
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5.1 | EXERCISES

I. (a) By reading values from the given graph of f, use five rect-

angles to find a lower estimate and an upper estimate for

the area under the given graph of f from x = 0 to x = 10.

In each case sketch the rectangles that you use.
(b) Find new estimates using ten rectangles in each case.

¥
5 // |
// = f(x)
0 5 10 x

[2.] (a) Use six rectangles to find estimates of each type for the
area under the given graph of f from x = 0 to x = 12.

(i) Ls (sample points are left endpoints)
(ii) Rs¢ (sample points are right endpoints)
(ili) Ms (sample points are midpoints)

(b) Is Lg an underestimate or overestimate of the true area?

(c) Is R¢ an underestimate or overestimate of the true area?

(d) Which of the numbers L¢, R¢, or Ms gives the best
estimate? Explain.

y
1~
8
| y=f(x) .
‘ L[
|
0 4 8 12 x

3. (a) Estimate the area under the graph of f(x) = cos x from
x = 0 to x = /2 using four approximating rectangles
and right endpoints. Sketch the graph and the rectangles.
Is your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

4. (a) Estimate the area under the graph of f(x) = Vx from
x = 0 to x = 4 using four approximating rectangles and
right endpoints. Sketch the graph and the rectangles. Is
your estimate an underestimate or an overestimate?
(b) Repeat part (a) using left endpoints.

[5.] (a) Estimate the area under the graph of f(x) =1 + x?* from
x = —1 to x = 2 using three rectangles and right end-

points. Then improve your estimate by using six rectan
Sketch the curve and the approximating rectangles,
(b) Repeat part (a) using left endpoints.
(c) Repeat part (a) using midpoints.
(d) From your sketches in parts (a)—(c), which appears tg
be the best estimate?
6. (a) Graph the function f(x) = 1/(1 + x%), =2 < x <2
(b) Estimate the area under the graph of f using four app
mating rectangles and taking the sample points to be
(i1) midpoints

(i) right endpoints
In each case sketch the curve and the rectangles.

(c) Improve your estimates in part (b) by using eight
rectangles.

7-8 With a programmable calculator (or a computer), it is p
to evaluate the expressions for the sums of areas of approxim
rectangles, even for large values of n, using looping. (On a T
the Is> command or a For-EndFor loop, on a Casio use Isz, on
HP or in BASIC use a FOR-NEXT loop.) Compute the sum of
areas of approximating rectangles using equal subintervals an(f :
right endpoints for n = 10, 30, 50, and 100. Then guess the v
of the exact area.

7. The region under y = x* from 0 to 1

8. The region under y = cos x from 0 to 77/2

@S] 9. Some computer algebra systems have commands that will
draw approximating rectangles and evaluate the sums of the
areas, at least if x* is a left or right endpoint. (For instance,
in Maple use 1leftbox, rightbox, leftsum, and
rightsum.) 2
(@) If f(x) = 1/(x*> + 1),0 < x < 1, find the left and right
sums for n = 10, 30, and 50.

(b) Illustrate by graphing the rectangles in part (a).

(c) Show that the exact area under f lies between 0.780
and 0.791.

(@] 10. (a) If f(x) = x/(x + 2), 1 < x < 4, use the commands_
discussed in Exercise 9 to find the left and right sums
n = 10, 30, and 50.
(b) Illustrate by graphing the rectangles in part (a).
(c) Show that the exact area under f lies between 1. 603
and 1.624.

[I1) The speed of a runner increased steadily during the ﬁrsti
seconds of a race. Her speed at half-second intervals 1S 8
the table. Find lower and upper estimates for the distand
she traveled during these three seconds.

t(s) l 0.5 1.0

v (ft/s) .

0
0 6.2 | 10.8 14.9




Sa
[

i

-

neter readings for a motorcycle at 12-second intervals
.n in the table.
the distance traveled by the motorcycle during

s time period using the velocities at the beginning of
. time intervals.
ve another estimate using the velocities at the end of

% e periOdS.

'f‘:our estimates in parts (a) and (b) upper and lower
mates? Explain.

0 l 12 24 36 48 60

30 ( 28 | 25 2 | 24 27

ted from a tank at a rate of r(¢) liters per hour. The
creased as time passed and values of the rate at two-
me intervals are shown in the table. Find lower and
timates for the total amount of oil that leaked out.

b o[ [ T[]
b [+ [ 6 [ o | s [ 55]

¢ estimate distances from velocity data, it is some-
cessary to use times f, 1, f,, s, . . . that are not
":épaced. We can still estimate distances using the time
ds A, = 1, — 1,_,. For example, on May 7, 1992, the
shuttle Endeavour was launched on mission STS-49,
rpose of which was to install a new perigee kick motor
Isat communications satellite. The table, provided
NASA, gives the velocity data for the shuttle between

4

lfic i and the jettisoning of the solid rocket boosters. Use

® data to estimate the height above the earth’s surface of
Endeavour, 62 seconds after liftoff,

Time (s) Velocity (ft/s)

nch 0 0
1ol maneuver 10 185
oll maneuver 15 319
tle to 89% 20 447
le t0 67% 32 742
ttle 10 104% 59 1325
mum dynamic pressure 62 1445
;:6cket booster separation 125 4151

_:v__,cicity graph of a braking car is shown. Use it to esti-
i distance traveled by the car while the brakes are

: "(ft/s;) _T

- 60

t
(seconds)
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16. The velocity graph of a car accelerating from rest to a speed
of 120 km/h over a period of 30 seconds is shown. Estimate
the distance traveled during this period.

v
(km/h)

80

7] |
] | [ ]

0 10 20 30 ¢
(seconds)

17-19 Use Definition 2 to find an expression for the area under
the graph of f as a limit. Do not evaluate the limit.

17. fx)=x, 1<x<16
18. fx) =1+x% 2<x<5

19. f(x) =xcosx, 0<x< /2

20-21 Determine a region whose area is equal to the given limit.
Do not evaluate the limit.

n 2 2 10
20. lim E—(s +—’>

n—oo1n n

lim Y — tan;—w
n

n—® i 4 n

22. (a) Use Definition 2 to find an expression for the area under
the curve y = x* from 0 to 1 as a limit. .
(b) The following formula for the sum of the cubes of the

first n integers is proved in Appendix E. Use it to evaluate
the limit in part (a).

2
13+23+33+--‘+n3=[WJ

(8] 23. (a) Express the area under the curve y = x° from 0 to 2 as

a limit.

(b) Use a computer algebra system to find the sum in your
expression from part (a).

(c) Evaluate the limit in part (a).

24. (a) Express the area under the curve y=x*+ 5x + x from

2to 7 as a limit.

(b) Use a computer algebra system to evaluate the sum in
part (a).

(¢) Use a computer algebra system to find the exact area by
evaluating the limit of the expression in part (b).
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[@aS] 25. Find the exact area under the cosine curve y = cos x from
x=0tox=b, where 0 < b < /2. (Use a computer alge-
bra system both to evaluate the sum and compute the limit.) 2
In particular, what is the area if b = /2?7 . A, = jnr’sin <——>

26. (a) Let A, be the area of a polygon with n equal sides
inscribed in a circle with radius r. By dividing the polygon

5.2

into n congruent triangles with central angle 27/
that .

(b) Show that lim, = A, = rr?. [Hint: Use Equation

THE DEFINITE INTEGRAL

We saw in Section 5.1 that a limit of the form

1] lim if(x,*) Ax = 31_r)r31c [F(xF) Ax + f(xF) Ax + - - + f(x¥) Ax)

n—o® =1

arises when we compute an area. We also saw that it arises when we try to find
tance traveled by an object. It turns out that this same type of limit occurs in a wid
ety of situations even when f is not necessarily a positive function. In Chapters 6 and
will see that limits of the form (1) also arise in finding lengths of curves, volumes of
centers of mass, force due to water pressure, and work, as well as other quantitie
therefore give this type of limit a special name and notation.

XSD

h@ DEEINITION OF A DEFINITE INTEGRAL If fisa function defined for a <
we divide the interval [a, b] into n subintervals of equal width Ax = (b — a)/n.
We let xo (= a), X1, X2, . . ., Xn (= b) be the endpoints of these subintervals and We
let x¥, x¥, ..., x}f be any sample points in these subintervals, so x7 lies in the ith
subinterval [x;_1, x:]. Then the definite integral of f froma to b is

Lb f(x) dx = lim 2 F(x¥) Ax

provided that this limit exists. If it does exist, we say that f is integrable on [a

The precise meaning of the limit that defines the integral is as follows:

For every number & > 0 there is an integer N such that

\j"f(x)dx - S fa)Ax| <s
a i=1
for every integer n > N and for every choice of x¥ in [xi-1, Xi]-

The symbol | was introduced by Leibniz and is called an integral si
an elongated S and was chosen because an integral is a limit of sums. In the
ﬁ’ f(x) dx, f(x) is called the integrand and a and b are called the limits of inte
4 is the lower limit and b is the upper limit. For now, the symbol dx has no
by itself; [*f(x) dx is all one symbol. The: dx simply indicates that the independeft
able is x. The procedure of calculating an integral is called integration.

v



seived his Ph.D. under the
dary Gauss at the University
ained there to teach. Gauss,
abit of praising other mathe-
Riemann’s “creative, active,
d and gloriously fertile
mition (2) of an integral that
mann. He also made major
ory of functions of a
“mathematical physics, num-
foundations of geometry.

ept of space and geometry
e right setting, 50 years later,

ral relativity theory. Riemann’s
oughout his life, and he died
e age of 39.

N approximation to

SECTION 5.2 THE DEFINITE INTEGRAL |||| 301

[NOTE 2] The definite integral [” f(x) dx is a number; it does not depend on x. In fact, we
could use any letter in place of x without changing the value of the integral:

J.:f(x) dx = Lbf(j) dt = Lbf(r) dr

The sum
f(xf) Ax

1

that occurs in Definition 2 is called a Riemann sum after the German mathematician
Bernhard Riemann (1826-1866). So Definition 2 says that the definite integral of an inte-
grable function can be approximated to within any desired degree of accuracy by a Riemann
sum.

We know that if f happens to be positive, then the Riemann sum can be interpreted as
a sum of areas of approximating rectangles (see Figure 1). By comparing Definition 2 with
the definition of area in Section 5.1, we see that the definite integral ff f(x) dx can be inter-
preted as the area under the curve y = f(x) from a to b. (See Figure 2.)

y y
Ax y=fx)
|
|
|
|
0 a x‘* b X 0 a b b
FIGURE 1| FIGURE 2

If f(x) =0, the integral | f(x)dxis the
area under the curve y = f(x) from a to b.

If f(x) = 0, the Riemann sum = f(x) Ax
is the sum of areas of rectangles.

If f takes on both positive and negative values, as in Figure 3, then the Riemann sum is
the sum of the areas of the rectangles that lie above the x-axis and the negatives of the areas
of the rectangles that lie below the x-axis (the areas of the gold rectangles minus the areas
of the blue rectangles). When we take the limit of such Riemann sums, we get the situa- -
tion illustrated in Figure 4. A definite integral can be interpreted as a net area, that is, a
difference of areas:

Lbf(x)dx =A — A

where A, is the area of the region above the x-axis and below the graph of f, and A, is the
area of the region below the x-axis and above the graph of f.

Although we have defined [*f(x) dx by dividing [a, b] into subintervals of
equal width, there are situations in which it is advantageous to work with subintervals
of unequal width. For instance, in Exercise 14 in Section 5.1 NASA provided velocity data
at times that were not equally spaced, but we were still able to estimate the distance trav-
eled. And there are methods for numerical integration that take advantage of unequal
subintervals.
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If the subinterval widths are Ax;, Ax,, ..., Ax,, we have to ensure that a
approach 0 in the limiting process. This happens if the largest width, max A
0. So in this case the definition of a definite integral becomes

J'bf(x) dx = l[i&m . f(x¥F) Ax;
a max Ax;—0 ;—;
We have defined the definite integral for an inegrable function, b

tions are integrable (see Exercises 67-68). The following theorem shows
commonly occurring functions are in fact integrable. It is proved in more adv

[3] THEOREM If f is continuous on [a, b], or if f has only a finite num
jump discontinuities, then f is integrable on [a, b]; that is, the definite ir
|? f(x) dx exists.

If f is integrable on [a, b], then the limit in Definition 2 exists and gives t
no matter how we choose the sample points x;*. To simplify the calculation
we often take the sample points to be right endpoints. Then xf = x; and th
an integral simplifies as follows.

,‘ [4] THEOREM If f is integrable on [a, b], then
J’” () dx = lim Y f(x) Ax
a e =]

b—a
where Ax = and xi=a+iAx
n

EXAMPLE | Express

lim Y (x + x;sin x;) Ax

= =)

as an integral on the interval [0, 7).

SOLUTION Comparing the given limit with the limit in Theorem 4, we see that
be identical if we choose f(x) = x* + x sin x. We are given that @ = 0 and
Therefore, by Theorem 4, we have

lim Y (x} + x;sin x;) Ax = foﬂ(x3 + x sin x) dx

n—® ;g

Later, when we apply the definite integral to physical situations, it will b
recognize limits of sums as integrals, as we did in Example 1. When Leib
notation for an integral, he chose the ingredients as reminders of the limiti
general, when we write

*lim if(x,*) Ax = fbf(x) dx

© .
R =1

we replace lim 3 by [, x* by x, and Ax by dx.
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EVALUATING INTEGRALS

When we use a limit to evaluate a definite integral, we need to know how to work with
sums. The following three equations give formulas for sums of powers of positive integers.
Equation 5 may be familiar to you from a course in algebra. Equations 6 and 7 were dis-
cussed in Section 5.1 and are proved in Appendix E.

5] §i= n(n2+ 1)
0 §i2=n(n+l)6(2n+l)

The remaining formulas are simple rules for working with sigma notation:

E c = nc
i=1
e proved by writing out
ded form. The left side of n n
[9] S ca;=c Y, ai
ga, + - -+ + ca, =2 =t
n n n
a2+-'-+a,.) E(a,-+b,-)=2a,-+2b,
i=1 i

al by the distributive property. The
e discussed in Appendix E.

@ é(ai—bi)zgai—ébi

EXAMPLE 2
(a) Evaluate the Riemann sum for f (x) = x> — 6x taking the sample points to be right

endpoints and a = 0, b = 3, and n = 6.
(b) Evaluate j: (x* — 6x) dx.

SOLUTION
(a) With n = 6 the interval width is

Ax: =
n

b-a 3-0_1
6 2

and the right endpoints are x; = 0.5, x; = 1.0, x3 = 1.5, x4 = 2.0, xs = 2.5, and
x6 = 3.0. So the Riemann sum is

R¢= if(xi) Ax
= £(0.5) Ax + £(1.0) Ax + f(1.5) Ax n £(2.0) Ax + f(2.5) Ax + £(3.0) Ax
= 1(—2.875 — 5 — 5625 4 + 0.625 + 9)

= —3.9375
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Yy

51 y=x3—6x

0 3 x
FIGURE 5

® In the sum, n is a constant (unlike i), so we
can move 3/n in front of the = sign.

ST y=x3—6x

Ay

FIGURE 6
3
[ o= 6x)dr=24,-4,=-6.75

FIGURE 7
Ry~ —6.3998

Notice that f'is not a positive function and so the Riemann sum does not represent g
of areas of rectangles. But it does represent the sum of the areas of the gold rectapg
(above the x-axis) minus the sum of the areas of the blue rectangles (below the y-ay:
Figure 5.

(b) With n subintervals we have

Thus xo = 0, x; = 3/n, x, = 6/n, x3 = 9/n, and, in general, x; = 3i/n. Since we
using right endpoints, we can use Theorem 4:

fg B ot li_r,rolc if(x;)Ax = lim if(%)%

0 B3 o)

-im2 3| (2] -o(2)]

38|27 18
= lim =Y [—31'3——1']

(Equation 9 with ¢

(Equations 11 and )

Il
g
N,
%

81 [n(n+ 1)}2_ﬁn(n+ 1)

(Equations 5 and 7
2 n’ 2 }

This integral can’t be interpreted as an area because f takes on both positive and
tive values. But it can be interpreted as the difference of areas A, — A,, where A
are shown in Figure 6.

Figure 7 illustrates the calculation by showing the positive and negative terms
right Riemann sum R, for n = 40. The values in the table show the Riemann su
approaching the exact value of the integral, —6.75, as n — oo,

n R,
40 —6.3998
100 —6.6130
500 —6.7229
1000 —6.7365
5000 —6.7473




+*is positive, the integral in

y=x'
5 X
e
or
"X2+y2—1
1 X

the area shown in Figure 8.
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A much simpler method for evaluating the integral in Example 2 will be given in
Section 5.3.

EXAMPLE 3
(a) Set up an expression for [3 x* dx as a limit of sums.
(b) Use a computer algebra system to evaluate the expression.

SOLUTION
(a) Here we have f(x) = x*,a=2,b=75,and

X,'=2+_
n

From Theorem 4, we get

c “ 3i\ 3
jsx“dx lim 2, f(x;) Ax = lim 2f<2+—l>—
2 n—® ;1 n—® ;—1 n n

n :\ 4
1im32<2+2>
n

n—=> N =1

(b) If we ask a computer algebra system to evaluate the sum and simplify, we obtain

2 10n°

i=1

: <2 L3 )4 _2062n* + 3045n° + 1170n* — 27

Now we ask the computer algebra system (o evaluate the limit:

33 3i\* 3(2062n* + 3045n° + 1170n* — 27
Lsx4dx=lim—2<2+_’> = iy L2062 134 n )
n n— n

n—=® R oje)

3(2062) _ 3093 _ 618.6
10 5

We will learn a much easier method for the evaluation of integrals in the next section. O
2 EXAMPLE 4 Evaluate the following integrals by interpreting each in terms of areas.

(a) jo' JT = %2 dx (b) ﬁ (x — 1) dx

SOLUTION

(a) Since f(x) =1 — %2 = 0, we can interpret this integral as the area under the curve
y = 4/1 — x* from 0 to 1. But, since y2 =1 — x? we get x? + y? = 1, which shows
that the graph of f is the quarter-circle with radius 1 in Figure 9. Therefore

j(:\/l —xldx=3m(})? = g—

(In Section 8.3 we will be able to prove that the area of a circle of radius r is art)
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y
1 (3,2)
y=x—1
0 A, 1 3 X
o | y:
FIGURE 10

EfZ4 Module 5.2/8.7 shows how the
Midpoint Rule estimates improve as n
increases.

FIGURE 11

EEB InVisual 5.2 you can compare left,

right, and midpoint approximations to the
integral in Example 2 for different values
of n.

(b) The graph of y = x — 1 is the line with slope 1 shown in Figure 10. W
integral as the difference of the areas of the two triangles:

j;(x; dx=A, — A, =32-2) - 31 -1)=15

THE MIDPOINT RULE

FIGURE 12
M,y ~ —6.7563

We often choose the sample point x;* to be the right endpoint of the ith subir
it is convenient for computing the limit. But if the purpose is to find an ap,
an integral, it is usually better to choose x¥ to be the midpoint of the inte
denote by x;. Any Riemann sum is an approximation to an integral, but if we
we get the following approximation.

\’ MIDPOINT RULE
“ Lbf(x) wre gf(}") Ax = Ax[f(x) + -+ + f(Xa)]

b__
Ax = =

where
n

l and )—C,‘ = %(xH + x,») = mldpomt of [x,-pl,x,-]

1
7 EXAMPLE 5 Use the Midpoint Rule with n = 5 to approximate Lz —d
x

SOLUTION The endpoints of the five subintervals are 1, 1.2, 1.4, 1.6, 1.8, anc
so the midpoints are 1.1, 1.3, 1.5, 1.7, and 1.9. The width of the subinterv
Ax = (2 — 1)/5 = &, so the Midpoint Rule gives

f%dx ~ Ax[£(11) + f(1.3) + £(15) + f(1.7) + f(L9

1( 1 1 1 1
=—|l—=+—=+—+ +—
5\ 1.1 1.3 15 1.7 1.9

~ 0.691908

Since f(x) = 1/x>0forl < x < 2, the integral represents an area, anc
mation given by the Midpoint Rule is the sum of the areas of the rectang
Figure 11.

At the moment we don’t know how accurate the approximation in Ex:
Section 8.7 we will learn a method for estimating the error involved in us
Rule. At that time we will discuss other methods for approximating defir

If we apply the Midpoint Rule to the integral in Example 2, we get tl
ure 12. The approximation Mso =~ —6.7563 is much closer to the true valt
right endpoint approximation, Ru = —6.3998, shown in Figure 7.
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PROPERTIES OF THE DEFINITE INTEGRAL

|

When we defined the definite integral f f f(x) dx, we implicitly assumed that @ < b. But the
definition as a limit of Riemann sums makes sense even if @ > b. Notice that if Wwe reverse
a and b, then Ax changes from (b — a)/n to (@ — b)/n. Therefore

[[Feax == [" 1) ax

If a = b, then Ax = 0 and so

Laf(x)dx=0

We now develop some basic properties of integrals that will help us to evaluate integrals
in a simple manner. We assume that Jfand g are continuous functions.

PROPERTIES OF THE INTEGRAL

b .
I f cdx =c(b — a), where cis any constant
a

2 [/ + gdr = [* 7 dx + [* gta) e

3. f: cf(x)dx = ¢ Lbf(x) dx, where c is any constant

4. Lb[f(x) — g(®]dx =Lbf(x)dx — f:g(x)dx
L

Property 1 says that the integral of a constant function f(x) = c is the constant times
the length of the interval. If ¢ > 0 and @ < b, this is to be expected because c(b - a)is
the area of the shaded rectangle in Figure 13. '

Property 2 says that the integral of a sum is the sum of the integrals. For positive func-
tions it says that the area under f + g is the area under f plus the area under g. Figure 14
helps us understand why this is true: In view of how graphical addition works, the corre-
sponding vertical line segments have equal height.

In general, Property 2 follows from Theorem 4 and the fact that the limit of a sum is the
sum of the limits:

J L7 + goldx = lim 3 (1) + gx)] ax

= lim [Ef(xi)Ax + Y g(x,-)Ax]
n=e | =1 i=1

= lim ), f(x;) Ax + lim > g(x:) Ax
PP jmi =@ =y

= [[f@dx + [* g ax
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& Property 3 seems intuitively reasonable
because we know that multiplying a function
by a positive number c stretches or shrinks its
graph vertically by a factor of ¢. So it stretches
or shrinks each approximating rectangle by a
factor ¢ and therefore it has the effect of
multiplying the area by c.

FIGURE 15

Property 3 can be proved in a similar manner and says that the integral of a
times a function is the constant times the integral of the function. In other words
stant (but only a constant) can be taken in front of an integral sign. Property 4 is pr
writing f — g = f + (—g) and using Properties 2 and 3 with ¢ = — 1.

EXAMPLE 6 Use the properties of integrals to evaluate JNOI (4 + 3x?)dx.
SOLUTION Using Properties 2 and 3 of integrals, we have
1 2 1 (1 2
j(4+3x)dx=[4dx+} 3x*dx
0 JO 0
1 )
=‘~4dx+3(x“dx
0 JO

We know from Property 1 that

[l4ax =40 -0 =4
and we found in Example 2 in Section 5.1 that “01 x*dx =13. So
[ @+ 3x%)dx = [‘4dx+3 [ x*dx
0 JO JO

=4+3-3=5

The next property tells us how to combine integrals of the same function over
intervals:

] [< oy + [ oy = [ o)

This is not easy to prove in general, but for the case where f (x) =0and a
Property 5 can be seen from the geometric interpretation in Figure 15: The ai
y = f(x) from a to c plus the area from c to b is equal to the total area from a to

7 EXAMPLE 7 If it is known that [1° f(x) dx = 17 and [§ f(x) dx = 12,
find [;° f(x) dx.

SOLUTION By Property 5, we have

j:f(x) dx + me(x) dx = Llof(x) dx

50 J'g”’ fdx = [ fx)dx - J‘OS F)dx=17-12=5

JO

Properties 1-5 are true whether a < b, a = b, or a > b. The following pro]
which we compare sizes of functions and sizes of integrals, are true only if a <
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COMPARISON PROPERTIES OF THE iNTEGRﬁEL

6. If f(x) = 0 for a < x < b, then L” f(x)dx = 0.

7. If f(x) = g(x) fora < x < b, then Lbf(x) dx = Lb g(x) dx.
8. If m < f(x) < M fora < x < b, then

m(b — a) sj”f(x)dst(b - a)

If f(x) = 0, then ff f(x) dx represents the area under the graph of f, so the geometric
interpretation of Property 6 is simply that areas are positive. But the property can be
proved from the definition of an integral (Exercise 64). Property 7 says that a bigger func-
tion has a bigger integral. It follows from Properties 6 and 4 because f — g = 0.

Property 8 is illustrated by Figure 16 for the case where f(x) = 0.If f is continuous we
could take m and M to be the absolute minimum and maximum values of f on the inter-
val [a, b]. In this case Property 8 says that the area under the graph of f is greater than the
area of the rectangle with height m and less than the area of the rectangle with height M.

PROOF OF PROPERTY 8 Since m < f(x) < M, Property 7 gives

Lb mdx < Lbf(x) dx < Lb M dx

Using Property 1 to evaluate the integrals on the left and right sides, we obtain

m(b—a)sj”f(x)dst(b—a) O

Property 8 is useful when all we want is a rough estimate of the size of an integral with-
out going to the bother of using the Midpoint Rule.

EXAMPLE 8 Use Property 8 to estimate f JVx dx.

SOLUTION Since f(x) = +/x is an increasing function, its absolute minimum on [1, 4] is
m = f(1) = 1 and its absolute maximum on [1, 4] is M = f(4) = V4 = 2. Thus
Property 8 gives

14 — 1)sfﬁdxs2(4— 1)

3< | Vrdax<e O

The result of Example 8 is illustrated in Figu;e 17. The area under y = Jx from 1 to 4
is greater than the area of the lower rectangle and less than the area of the large rectangle.

v
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EXERCISES

1. Evaluate the Riemann sum forf(x) =3 —
with six subintervals, taking the sample points to be left end-
points. Explain, with the aid of a diagram, what the Riemann

sum represents.

1
ix,ZéxSM,

2. Iff(x)=x>—2x,0sxs 3, evaluate the Riemann sum
with n = 6, taking the sample points to be right endpoints.
What does the Riemann sum represent? Illustrate with a
diagram.

If f(x) = Jx — 2,1 <x <6, find the Riemann sum with

n = 5 correct to six decimal places, taking the sample points
to be midpoints. What does the Riemann sum represent?
Tllustrate with a diagram.

o

4. (a) Find the Riemann sum for f(x) = sinx, 0 <x < 37/2,
with six terms, taking the sample points to be right
endpoints. (Give your answer correct to six decimal
places.) Explain what the Riemann sum represents with
the aid of a sketch.

(b) Repeat part (a) with midpoints as sample points.

[5. The graph of a function f is given. Estimate ‘fff(x) dx using
four subintervals with (a) right endpoints, (b) left endpoints,
and (c) midpoints.

6. The graph of g is shown. Estimate |: g(x) dx with six sub-
intervals using (a) right endpoints, (b) left endpoints, and

(c) midpoints.

7. A table of values of an increasing function f is shown. U:
the table to find lower and upper estimates for [2° f(x) dx.

nction obtained from an
ent. Use them to estimate [2 () dx using three ¢
points, (b) left endpoints, ¢
known to be an increasir
er your estimates are less th

8. The table gives the values of a fu

experim
subintervals with (a) right end
(c) midpoints. If the function is
function, can you say wheth
greater than the exact value of the integral?

9-12 Use the Midpoint Rule with the given value of nto a
imate the integral. Round the answer to four decimal place:
10. V/z cos‘xdx, n-=

JO

@‘EU\/)H + 1dx, n=4
s. %= 1

1. > -
i 1 jo sin(x?)dx, n=75 12. L e

e

e

dx, n-

[@S] 13. If you have a CAS that evaluates midpoint approximal
and graphs the corresponding rectangles (use middle
and middlebox commands in Maple), check the ans
Exercise 11 and illustrate with a graph. Then repeat W

n = 10 and n = 20.

able calculator or computer (see the
tions for Exercise 7 in Section 5.1), compute the left
Riemann sums for the function f(x) = sin(x?) on the
[0, 1] withn = 100. Explain why these estimates shc

14. With a programm

0306 < L‘ sin(x?) dx < 0315

Deduce that the approximation using the Midpoint R
n = 5 in Exercise 11 is accurate to two decimal plac

15. Use a calculator or computer to make a table of valu
right Riemann sums R, for the integral j;’ sin x dx W
n = 5, 10, 50, and 100. What value do these numbe’
to be approaching?

ulator or computer to make a table of valt
left and right Riemann sums L, and R, for the integ
(21 + x* dxwithn = 5, 10, 50, and 100. Betwee

numbers must the value of the integral lie? Can you
‘similar statement for the integral ff] J1 4 x* dx?]

16. Use a calc



press the limit as a definite integral on the given

s
_L%Ax, [2,6]
L 4+ xi

ﬁoﬁ Ax, [77, 277]

2+ D2 Ax, [1,8]

(4 - 3 + 66 1A%, [0,2]

the form of the definition of the integral given in
to evaluate the integral.

+ 3x) dx [22) [' (2 + 26— 5)dx
\

2y dx 24. f:(l + 2x%) dx

ad an approximation to the integral [ (x* — 3x) dx
ing a Riemann sum with right endpoints and n = 8.
Draw a diagram like Figure 3 to illustrate the approxi-
ation in part (a).

se Theorem 4 to evaluate [ (x> — 3x) dx.

Interpret the integral in part (c) as a difference of areas
nd illustrate with a diagram like Figure 4.

b? - a*

¢ that jbxdx = 2

b}_al

thatjbxzdx =
a 3

Sxdx 32. _Llox(’ dx

h of f is shown. Evaluate each integral by inter-
g 1t 1n terms of areas.

£ dx ®) [ £ dx
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© [/ £0) dx @ [ £ dx
[ ]
N y=f0)
0 2 4 6 8 | x

34. The graph of g consists of two straight lines and a semicircle.
Use it to evaluate each integral.

@ (o ® [g0dr @ [gar
y
-4
| 5 y=g)
0 4 7

35-40 Evaluate the integral by interpreting it in terms of areas.

fﬁ f: V4 — x? dx

35. f:(éx ~ 1) dx
"0+ =)ax

38 f,(3 — 2x) dx

39. J._lex|dx 40. f010|x—5|dx

™ .,
41. Evaluate j sin®x cos*x dx.
m

42. Given that J;: 3x/x*+ 4 dx = 5\/5_ — 8, what is

f’ 3uu? + 4 du?

43. In Example 2 in Section 5.1 we showed that [j x* dx = i
Use this fact and the properties of integrals to evaluate
fy (5 — 6x?)dx.

44. Use the properties of integrals and the result of Example 3 to
evaluate [ (1 + 3x*) dx.

45. Use the results of Exercises 27 and 28 and the properties of
integrals to evaluate [ (2x> — 3x + 1) dx.

46. Use the result of Exercise 27 and the fact that
fg'/ 2 cos xdx = 1 (from Exercise 25 in Section 5.1),
together with the properties of integrals, to evaluate
f(;'/z (2 cos x — 5x) dx.
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[47.) Write as a single integral in the form 2 f(x) dx: 61-62 Use properties of integrals, together with Exercises 2
28, to prove the inequality.
2 5 =
i _ (3 — 26 () ;
L Faydx* Lf(*)dx J.,zf(x)dx 6l. 13\/)(4 Fldx= 62. JO 2 ysin xdx <38
. 8

N
48. If [* f(x) dx = 12 and [3 f(x) dx = 3.6, find [ f(x) dx.

63. Prove Property 3 of integrals.
[9] If |7 f(x) dx = 37 and JJ g(x) dx = 16, find

[P[2f(x) + 3g(0)]dx.

50. Find [ f(x) dx if
£ = {3 for x < 3

x for x=3

64. Prove Property 6 of integrals.

65. If f is continuous on [a, b], show that

< ["17@)|dx

Lb f(x)dx

51. Suppose f has absolute minimum value m and absolute max- (Hint: —| f(x)| <f(x) <|f&X)]]
imum value M. Between what two values must Jozf(x) dx 66. Use the result of Exercise 65 to show that
Jie? Which property of integrals allows you to make your
conclusion?

,ﬁ”f(x) sin 2xdx| < [ £ | dx

52-54 Use the properties of integrals to verify the inequality with-
out evaluating the integrals. 67. Let f(x) = 0if x is any rational number and f(x) = 1 if
any irrational number. Show that f1is not integrable on [

68. Let f(0) =0 andf(x) = 1/xif 0 <x=<1. Show that f
integrable on [0, 1]. [Hint: Show that the first term in t

52. *01 J1+xtdx = ‘1]1 V1 + xdx

€3 L earape e 23
832 < .(,, 1+ x?dx<2v2 Riemann sum, f(x*) Ax, can be made arbitrarily large.
NoX T NEY . v St e TR ;
54. < ‘ cOsidn < 69-70 Express the limit as a definite integral.
24 Jws 24 Lo
i
e - 69. lim 3 — [Hint: Consider f(x) = x*]
n—® i1 n°
55-60 Use Property 8 to estimate the value of the integral. | n 1
N 70. lim — E e )
55. [ Vi dx s6. |  dx nren = 1+ /n)
i Jo 1+ x? I
57. [”/3 _ 58. {2 (x¥ — 3% + 3)dx 71. Find [*x2dx. Hint: Choose x" to be'the geometric 1
w w0 xi_1 and x; (that is, x* = V/xi-1x; ) and use the identit

59. {11 J1 + x*dx 60. (Zﬁ (x — 2sinx) dx 1 - 1

1
m(m + 1) m m+ 1

e

P\Yv ,} AREA FUNCTIONS
T g s hietih e

SRS I. (a) Draw the line y = 2t + 1 and use geometry to find the area under this line, abov
t-axis, and between the vertical lines t = 1 and 7 = 3.

(b) If x > 1, let A(x) be the area of the region that lies under the line y = 2t + 1be
¢t = 1 and t = x. Sketch this region and use geometry to find an expression for A

(c) Differentiate the area function A(x). What do you notice?

5
]

. (ay IEx = —1,let
AW =T +

A(x) represents the area of a region. Sketch that region.

e e O R L B S




SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS |||| 313

(b) Use the result of Exercise 28 in Section 5.2 to find an expression for A(x).

(¢) Find A'(x). What do you notice?

(d) If x = —1 and h is a small positive number, then A(x + k) — A(x) represents the area
of a region. Describe and sketch the region.

(e) Draw a rectangle that approximates the region in part (d). By comparing the areas of
these two regions, show that

Alx + h) — A(x) ¢

3 14 x

(f) Use part (e) to give an intuitive explanation for the result of part (c).

3. (a) Draw the graph of the function f(x) = cos(x?) in the viewing rectangle [0, 2]

by [—1.25, 1.25].
(b) If we define a new function g by

glx) = J: cos(t?) dt

then g(x) is the area under the graph of f from 0 to x [until f(x) becomes negative, at
which point g(x) becomes a difference of areas]. Use part (a) to determine the value of
x at which g(x) starts to decrease. [Unlike the integral in Problem 2, it is impossible to
evaluate the integral defining g to obtain an explicit expression for g(x).]

(c) Use the integration command on your calculator or computer to estimate g(0.2), (0.4),
g(0.6), . .., g(1.8), g(2). Then use these values to sketch a graph of g.

(d) Use your graph of g from part (c) to sketch the graph of g’ using the interpretation of
g'(x) as the slope of a tangent line. How does the graph of g’ compare with the graph
of f?

4. Suppose f is a continuous function on the interval [a, b] and we define a new function g
by the equation

g0 = ["f@) ar

Based on your results in Problems 1-3, conjecture an expression for g'(x).

5.3

THE FUNDAMENTAL THEOREM OF CALCULUS

The Fundamental Theorem of Calculus is appropriately named because it establishes a
connection between the two branches of calculus: differential calculus and integral calcu-
lus. Differential calculus arose from the tangent problem, whereas integral calculus arose
from a seemingly unrelated problem, the area problem. Newton’s mentor at Cambridge,
Isaac Barrow (1630-1677), discovered that these two problems are actually closely
related. In fact, he realized that differentiation and integration are inverse processes. The
Fundamental Theorem of Calculus gives the precise inverse relationship between the
derivative and the integral. It was Newton and Leibniz who exploited this relationship and
used it to develop calculus into a systematic mathematical method. In particular, they saw
that the Fundamental Theorem enabled them to compute areas and integrals very easily
without having to compute them as limits of sums as we did in Sections 5.1 and 5.2.

The first part of the Fundamental Theorem deals with functions defined by an equation
of the form ‘

M g(x) = [" @ dr

where f is a continuous function on [a, b] and x varies between a and b. Observe that g

v
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¥
0| a X b t
FIGURE 1|

FIGURE 3

FIGURE 4
gt = |, fle)de

depends only on X, which appears as the variable upper limit in the integral. If x is 4 fy
number, then the integral f; f(?) dt is a definite number. If we then let x vary, the p 5
(X f(2) dr also varies and defines a function of x denoted by g(x).

If f happens to be a positive function, then g(x) can be interpreted as the area ung
graph of f from a to %, where x can vary from a to b. (Think of g as the “area so far?
tion; see Figure 1.)

2 EXAMPLE | If f is the function whose graph is shown in Figure 2 and
g(x) = fgf(t) dt, find the values of g(0), g(1), g(2), g(3), g(4), and g(5). Then sketch
rough graph of g.
SOLUTION First we notice that g(0) = {5 f(t) dr = 0. From Figure 3 we see that g(1) is
area of a triangle:

1
o) = [ fOdr=3(1-2)=1
To find g(2) we add to g(1) the area of a rectangle:
2 1 2
9@ = [ f@dr=[ @y dr + [[fdr=1+ (-2 =3
We estimate that the area under f from 2 to 3 is about 1.3, so

g(3) = g(2) + LBf(t) dt=~3+13=43

Y - 73
27 21 <
-1 o) -1 / +-—
\ .
\
0 1 2 4 1 0 1 2 ,ﬁj’
g4)=3 g(5)~17 8
For t > 3, f(t) is negative and so we start subtracting areas:

g(4) = g(3) + L“f(z) dt ~ 43 + (-1.3) =3.0

o5) = g@) + [ fO dt =3 + (=13) = 17 "

We use these values to sketch the graph of g in Figure 4. Notice that, because
positive for t <3, we keep adding area for r < 3 and so g is increasing up toXx=
where it attains a maximum value. For x > 3, g decreases because f(z) is negati¥

If we take f(f) = tand a = 0, then, 'ﬁsing Exercise 27 in Section 5.2, we ha

2z
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Notice that g'(x) = x, that is, g' = f. In other words, if g is defined as the integral of f by
Equation 1, then g turns out to be an antiderivative of f, at least in this case. And if we
sketch the derivative of the function g shown in Figure 4 by estimating slopes of tangents,
we get a graph like that of f in Figure 2. So we suspect that g’ = f in Example 1 too.

To see why this might be generally true we consider any continuous function f with
f(x) = 0. Then g(x) = [ f(#)dt can be interpreted as the area under the graph of f from
a to x, as in Figure 1.

In order to compute g'(x) from the definition of derivative we first observe that,
for h > 0, g(x + h) — g(x) is obtained by subtracting areas, SO it is the area under the

h graph of f from x to X + h (the gold area in Figure 5). For small & you can see from the
2 figure that this area is approximately equal to the area of the rectangle with height f(x) and
- width h:
A Lo g(x + h) — g(x) = hf(x)
¥, x+h g(x+h)—g(x) N
s0 Y f(x)

Intuitively, we therefore expect that

gt g
g() = lim & e
The fact that this is true, even when f is not necessarily positive, is the first part of the Fun-

damental Theorem of Calculus.

THE FUNDAMENTAL THEOREM OF CALCULUS, PART | If f is continuous on [, bl,

then the function g defined by
g(x) = j’f(z)dz a<x<b

& the name of this theorem as
it says that the derivative of a
with respect to its upper limit is
aluated at the upper limit.

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

PROOF If x and x + h are in (a, b), then

g(x + h) — g(x) = f” @) dt — L‘ f(1) dt
= (LXf(t) dt + §:+hf(t) dt> — fo(t) dt (by Property 5)
- [0

and so, for h # 0,

X

glx + h; — g(x) _ lhj‘ﬁhf(t) it

For now let us assume that h > 0. Since f is continuous on [x,x + h), the Extreme
Value Theorem says that there are numbers u and v in [x, x + h] such that flu) =m

—4_
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FIGURE 6

ﬂﬂ Module 5.3 provides visual
evidence for FTCI.

and f(v) = M, where m and M are the absolute minimum and maximum values of
on [x, x + h). (See Figure 6.)
By Property 8 of integrals, we have

mh= " {0 dt < Mh

that is, Fwh < {h £ dt < f@h
Since h > 0, we can divide this inequality by A:
fy < [ s dr < 0)
Now we use Equation 2 to replace the middle part of this inequality:

B < L= < g

Inequality 3 can be proved in a similar manner for the case h < 0. (See Exercise 59,)
Now we let h — 0. Then u — x and v — x, since u and v lie between x and x +
Therefore

lim f(u) = ii_rpf(u) = f(x)

h—0
and ;lirr(ll f(v) = lim f(v) = f(x)
because f is continuous at x. We conclude, from (3) and the Squeeze Theorem, that =

g'(x) = lim /g(x i hi)z — g) = f(x)

h—0

If x = a or b, then Equation 4 can be interpreted as a one-sided limit. Then Theo= :
rem 3.2.4 (modified for one-sided limits) shows that g is continuous on [a, b}.

Using Leibniz notation for derivatives, we can write FTC1 as

5] Lt de =1

4
X Ja

when f is continuous. Roughly speaking, Equation 5 says that if we first integrate
then differentiate the result, we get back to the original function f.

{2 EXAMPLE 2 Find the derivative of the function g(x) = [0 T+ 1 dt.

SOLUTION Since f() = V1 + 12 is continuous, Part 1 of the Fundamental Theorem @

Calculus gives
gx)=+1+ x?2




function

T,(mz/ 2)dt
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EXAMPLE 3 Although a formula of the form g(x) = [Z f(1) dt may seem like a strange
way of defining a function, books on physics, chemistry, and statistics are full of such
functions. For instance, the Fresnel function

S(x) = jox sin(7rt?/2) dt

is named after the French physicist Augustin Fresnel (1788—1827), who is famous for his
works in optics. This function first appeared in Fresnel’s theory of the diffraction of light
waves, but more recently it has been applied to the design of highways.

Part 1 of the Fundamental Theorem tells us how to differentiate the Fresnel function:

S'(x) = sin(mx?/2)

This means that we can apply all the methods of differential calculus to analyze S (see
Exercise 53).

Figure 7 shows the graphs of f(x) = sin(#x?%/2) and the Fresnel function
S(x) = [y f(¢) dr. A computer was used to graph S by computing the value of this
integral for many values of x. It does indeed look as if S(x) is the area under the graph
of f from O to x [until x = 1.4, when S(x) becomes a difference of areas]. Figure 8
shows a larger part of the graph of S.

If we now start with the graph of S in Figure 7 and think about what its derivative
should look like, it seems reasonable that §'(x) = f(x). [For instance, S is increasing
when f(x) > 0 and decreasing when f (x) < 0.] So this gives a visual confirmation of
Part 1 of the Fundamental Theorem of Calculus. a

d rx
EXAMPLE 4 Find — j sec t dt.
dx )

SOLUTION Here we have to be careful to use the Chain Rule in conjunction with FTCI.
Let u = x*. Then

d X‘ d u
;J.I sectdt—:;j1 sec t dt

3 j“ tdtfi—'i by the Chain Rul
dn 1sec dx (by the Chain Rule)

du
=secu—— (by FTC1)
dx

sec(x?) - 4x° O

In Section 5.2 we computed integrals from the definition as a limit of Riemann sums
and we saw that this procedure is sometimes long and difficult. The second part of the
Fundamental Theorem of Calculus, which follows easily from the first part, provides us
with a much simpler method for the evaluation of integrals.
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We abbreviate this theorem as FTC2.

T T—

THE FUNDAMENTAL THEOREM OF CALCULUS, PART 2 If f is continuous on
[a, b], then

["f(x)dx = F@®) - Fla)

where F is any antiderivative of f, that is, a function such that F’ = f.

PROOF  Let g(x) = [ f(¢) dr. We know from Part 1 that g'(x) = f(x); that is, g is an ant
derivative of f. If F is any other antiderivative of f on [a, b], then we know from Cog
lary 4.2.7 that F and g differ by a constant:

(6] F(x) =g(x) + C

for a < x < b. But both F and g are continuous on [a, b] and so, by taking limits of b
sides of Equation 6 (as x — a* and x — b~ ), we see that it also holds when x = g ap,
x = b.

If we put x = a in the formula for g(x), we get

gla) = [ f(0)di =0
So, using Equation 6 with x = b and x = a, we have
F(b) = Fla) = [g(b) + C] — [g(a) + C]
= g(b) — g(a) = g(b)

= [bf(t) dt

Part 2 of the Fundamental Theorem states that if we know an antiderivative F of f i
we can evaluate |f f(x) dx simply by subtracting the values of F at the endpoints of
interval [a, b]. It’s very surprising that f” f(x) dx, which was defined by a complicated p
cedure involving all of the values of f(x) for a < x < b, can be found by knowing the
ues of F(x) at only two points, a and b.

Although the theorem may be surprising at first glance, it becomes plausible if we il
pret it in physical terms. If »() is the velocity of an object and s(?) is its position.at tifl
then v(1) = s'(¢), so s is an antiderivative of v. In Section 5.1 we considered an objecti
always moves in the positive direction and made the guess that the area under the veloc
curve is equal to the distance traveled. In symbols:

j *o(d) dt = s(b) — s(a)

a

That is exactly what FTC2 says in this context.

7 EXAMPLE 5 Evaluate the integral jlz x dx.

SOLUTION The function f(x) = x* is continuous on [—2, 1] and we know from Sec-
tion 4.9 that an antiderivative is F(x) = ;x*, so Part 2 of the Fundamental Theorem
gives

|1 x*dx=F(1) —F(=2) =) - i(~2)* = -%

v




Fundamental Theorem we use

iderivative F of f. It is not neces-

most general antiderivative.

= C0S X

SIE]
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Notice that FTC2 says we can use any antiderivative F of f. So we may as well use
the simplest one, namely F(x) = ! instead of jx* + 7 or jx* + C. O

We often use the notation
b
F(x)], = F(b) - F(a)

So the equation of FTC2 can be written as

jbf(x)dx=F(x)]: where F'=f

Other common notations are F(x) |2 and [F(x)]2.

EXAMPLE 6 Find the area under the parabola y = x* from 0 to 1.

SOLUTION An antiderivative of f(x) = x* is F(x) = 3x°. The required area A is found using
Part 2 of the Fundamental Theorem:

If you compare the calculation in Example 6 with the one in Example 2 in Section 5.1,
you will see that the Fundamental Theorem gives a much shorter method.

EXAMPLE 7 Find the area under the cosine curve from 0 to b, where 0 < b < w2

SOLUTION Since an antiderivative of f(x) = cos x is F(x) = sin x, we have
b
A= fo cos.xdx = sinx]g =sinb — sin0 = sin b

In particular, taking b = 7/2, we have proved that the area under the cosine curve
from O to /2 is sin(7/2) = 1. (See Figure 9.) O

When the French mathematician Gilles de Roberval first found the area under the sine
and cosine curves in 1635, this was a very challenging problem that required a great deal
of ingenuity. If we didn’t have the benefit of the Fundamental Theorem, we would have to
compute a difficult limit of sums using obscure trigonometric identities (or a computer
algebra system as in Exercise 25 in Section 5.1). It was even more difficult for Roberval
because the apparatus of limits had not been invented in 1635. But in the 1660s and 1670s,
when the Fundamental Theorem was discovered by Barrow and exploited by Newton and
Leibniz, such problems became very easy, as you can see from Example 7.

EXAMPLE 8 What is wrong with the following calculation?

3 1 P 1 4
O

-1 x? =] |

SOLUTION To start, we notice that this calculation must be wrong because the answer is
negative but f(x) = 1/x> = 0 and Property 6 of integrals says that [ f(x) dx = 0 when
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f = 0. The Fundamental Theorem of Calculus applies to continuous functions, i
be applied here because f(x) = 1/x? is not continuous on [—1, 3]. In fact, f hag it 1
nite discontinuity at x = 0, so mﬁ

3 1 .
j —dx does not exist
_— xz

DIFFERENTIATION AND INTEGRATION AS INVERSE PROCESSES

We end this section by bringing together the two parts of the Fundamental Theorem

—

THE FUNDAMENTAL THEOREM OF CALCULUS Suppose f is continuous on [a, b}, =
1. If g(x) = Jn“f(r) dt, then ¢'(x) = f(x).

2. (bf(x) dx = F(b) — F(a), where F is any antiderivative of f, thatis, F' = f,

We noted that Part 1 can be rewritten as

d rx
— | f) dt = f(x)

(l.\' Ja©

which says that if f is integrated and then the result is differentiated, we arrive backal
original function f. Since F'(x) = f(x), Part 2 can be rewritten as

l‘b F'(x) dx = F(b) — F(a)

Ja

This version says that if we take a function F, first differentiate it, and then integrate
result, we arrive back at the original function F, but in the form F(b) — F(a). Tt
together, the two parts of the Fundamental Theorem of Calculus say that differentis
and integration are inverse processes. Each undoes what the other does.

The Fundamental Theorem of Calculus is unquestionably the most important thee
in calculus and, indeed, it ranks as one of the great accomplishments of the human i
Before it was discovered, from the time of Eudoxus and Archimedes to the time of Ga
and Fermat, problems of finding areas, volumes, and lengths of curves were s0 diff
that only a genius could meet the challenge. But now, armed with the systematic me
that Newton and Leibniz fashioned out of the Fundamental Theorem, we will se€ it
chapters to come that these challenging problems are accessible to all of us.
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ERCISES

y wh
ation are inverse processes.”

"#j: £l ar, where f is the function whose graph

e g(x)
e g(7).

m value?

-j‘;‘ £(z) dt, where f is the function whose graph

nterval is g increasing?
re does g have a maximum value?
a rough graph of g.

ok

.___1—

at is meant by the statement that “differenti-

forx=20,1,2,3,4,5, and 6.

oes g have a maximum value? Where does it have a

e g(0), g(1), 9(2), g(3), and g(6).

|
I EMEAN
T

’ e g(—3) and g(3).
ate g(—2), g(— 1), and g(0).
interval is g increasing?

h a rough graph of g.

he graph in part (e) to sketch the graph of g'(x).

{*, f(0) dr, where f is the function whose graph is

does g have a maximum value?

5-6 Sketch the area represented by g(x). Then find g'(x) in two
ways: (a) by using Part 1 of the Fundamental Theorem and (b) by
evaluating the integral using Part 2 and then differentiating.

5. g(x) = j: 1? dt 6. g(x) = jox (1 + r)at

7-18 Use Part 1 of the Fundamental Theorem of Calculus to find
the derivative of the function.

x| s o
7. g(x)—jl ——_t3+1dt 8. g(x)_jl (2 + t*)dt
g9(y) = L t* sin ¢ dt 10. g(r) = L [T ¥ 4 dx

1. F(x) = jﬂ\/l + sect dt
[Hint: J"\/l + sect dt = —r J1 + sect dt]
1
12. G(x) = J. cos/t dt

hx) = [ sin'rdr 14, h(x) = jo JTFrdr

5. y = jo““ Ji+ r dt 16. y = jl A + v?)Pdv

1 u3

0
v =J. 3 =J. in?
17.] y e du 18. y l/){2sm tdt

19-36 Evaluate the integral.

19. fl (x* — 24) dx 20. fzedx
21. j? (5—2t+ 3t?%) dt 22. jol (1 S %u“ _ %ug) i
23. jo' x*/5 dx 24. f Ix dx
" f%dt 26. frﬂcosed()
27. joz x(2 + x°) dx 28. jo‘ (3 + xy/x ) dx
9x— 1 )
. [ s 30. "y - D2y + Dy
31. J.O"M sec’tdt . 32. J'O”/A T
33, [*(1 + 2y)%d g PEEL,
’ .{1( v ) ay > jl 52 s
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(m i fosx< 2
35. ’O f(x)dx where f(x) = {smx ! &=

cosx ifm2<xs<m

2 if =2 <

x=<0
4—x* fo<x<?2

36. ‘22 f(x)dx where f(x) = {

[ 37-40 What is wrong with the equation?

39. fw sec 6 tan 6 d6 = sec 0]:/3 = -3
Ju/3

40. ‘“T sec2x dx = tan x; = 0

@ 41-44 Use a graph to give a rough estimate of the area of the

region that lies beneath the given curve. Then find the exact area.
4. y=3x, 0<sx<27

42 y=x" 1<x<6

43 y=sinx, 0sSx<m 44. y = sec’x, 0 < x < /3

45-46 Evaluate the integral and interpret it as a difference of
areas. Illustrate with a sketch.

s 5 /.

5] [* x?dx a6. [

y
sin x dx
=1 /4

47-50 Find the derivative of the function.

rax u?— 1
47. = d
A7) () = |," — du

[ Hint: ‘E:f(u) du = LO‘ f(u) du + f:vrf(u) du]

1

g(x) a [:nx 2+ t4 dt

48.

49. y = [i \/r- sin t dt
50. y = “SI cos(u?) du
5 i 1+ u?
SLHFuwzﬁfManMWﬂﬁz‘;l——ﬁ—w,
J . u
find F"(2).

X ]
52. Find the interval on which the curve y = f e —df
: Jol+t+1t
is concave upward.

(Cks]

[

y

53. The Fresnel function § was defined in Example 3 an
graphed in Figures 7 and 8.
(a) At what values of x does this function have loca]
mum values?
(b) On what intervals is the function concave upwarg
(c) Use a graph to solve the following equation corre
decimal places:

fo“ sin(m1%/2) dt = 0.2

[54.] The sine integral function

x sin ¢

Si(x) = jo i

is important in electrical engineering. [The integrand

f(t) = (sin #)/t is not defined when ¢ = 0, but we knc

its limit is 1 when # — 0. So we define f(0) = 1 and

makes f a continuous function everywhere.]

(a) Draw the graph of Si.

(b) At what values of x does this function have local
mum values?

(c) Find the coordinates of the first inflection point tc
right of the origin.

(d) Does this function have horizontal asymptotes?

(e) Solve the following equation correct to one decin

".r sin ¢
JOo t

55-56 Let g(x) = [ f(¢) dt, where f is the function who

is shown.

(a) At what values of x do the local maximum and minin
values of g occur?

(b) Where does g attain its absolute maximum value?

(c) On what intervals is g concave downward?

(d) Sketch the graph of g.

0.4

. 0.2

0| 1 3 5 7 9 t
_02 =




the limit by first recognizing the sum as a
for a function defined on [0, 1].

) for the case h < 0.

mula for

d [
dx J‘M fas

that1 < /1 +x* <1+ x3forx=0.

that 1 < fol J1 + x3dx < 1.25.

that cos(x?) = cosxfor0 < x < L.
ce that f(;'/ﬁ cos(x?) dx = 1.

2

10 x
= —_— = 0.
0 L x“+x2+ldx 01

ing the integrand to a simpler function.

0 if x<0
X fosx<l|1
2—-x ifl<xs=2
0 if x>2

o) = [ 1@ ds

the graphs of f and g.

nction f and a number a such that

%]\t
+L%d:=2\/§ for all x > 0

here. Evaluate |7 h"(u) du.

stinuous and g and h are differentiable functions,

nd an expression for g(x) similar to the one for f(x).

e is f differentiable? Where is g differentiable?

is a function such that h(1) = —2, h'(1) = 2,
h(2) = 6, h'(2) = 5, "(2) = 13, and k" is continu-

turing company owns a major piece of equip-
depreciates at the (continuous) rate f = f(¢), where
e measured in months since its last overhaul.

fixed cost A is incurred each time the machine
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is overhauled, the company wants to determine the optimal

time 7 (in months) between overhauls.

(a) Explain why [, f(s) ds represents the loss in value of the
machine over the period of time 7 since the last overhaul.

(b) Let C = C(¢) be given by

cl) = % [A ¥ jo £(s) ds]

What does C represent and why would the company want
to minimize C?

(c) Show that C has a minimum value at the numbers 7 = T'
where C(T) = f(T).

68. A high-tech company purchases a new computing system
whose initial value is V. The system will depreciate at the rate
f = f(¢) and will accumulate maintenance costs at the rate
g = g(1), where ¢ is the time measured in months. The com-
pany wants to determine the optimal time to replace the sys-

tem.
(a) Let

o) =+ [[16) + g9 ds

Show that the critical numbers of C occur at the numbers
t where C(t) = f(1) + g(o).
(b) Suppose that

v Vt if 0<t=<30
AP S <
f =415 450

0 if +> 30

Vi?
12,900

and g@t) =

Determine the length of time 7 for the total depreciation
D) = fé £(s) ds to equal the initial value V.

(c) Determine the absolute minimum of C on 0, T]

(d) Sketch the graphs of C and f + ¢ in the same coordinate
system, and verify the result in part () in this case.

The following exercises are intended only for those who have
already covered Chapter 7.

69-74 Evaluate the integral.
9 1 1onx
6. | oo 70. [ 107dx

6
n (e 72. '

dt

112 /1 — 12 o 12+ 1

4+ u’
74. J.,z - du

1 u+tl
73. Ll e“"'du 7

)
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CHAPTER 5 INTEGRALS

INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM

We saw in Section 5.3 that the second part of the Fundamental Theorem of Caley
vides a very powerful method for evaluating the definite integral of a function, 2
that we can find an antiderivative of the function. In this section we introduce a
for antiderivatives, review the formulas for antiderivatives, and use them to eval
nite integrals. We also reformulate FTC2 in a way that makes it easier to apply to

and engineering problems.

INDEFINITE INTEGRALS

Both parts of the Fundamental Theorem establish connections between antiderivatiy
definite integrals. Part 1 says that if f is continuous, then [*£(2) dt is an antiderivati
Part 2 says that [ f(x) dx can be found by evaluating F(b) — F(a), where F is an antid
ative of f.

We need a convenient notation for antiderivatives that makes them easy to wo
Because of the relation given by the Fundamental Theorem between antiderivati
integrals, the notation [ f(x)dx is traditionally used for an antiderivative of f and i§

an indefinite integral. Thus

]

[f()dx=F) — means  F)=f() |

) B

For example, we can write

3 3
d &

szdx=—x——+C because L e g PR
3 dx \ 3

So we can regard an indefinite integral as representing an entire family of functio

antiderivative for each value of the constant C).

You should distinguish carefully between definite and indefinite integrals.‘Adg

integral [/ f(x)dx is 2 number, whereas an indefinite integral [f(x)dxis 2 functig

family of functions). The connection between them is given by Part 2 of the Fund?%
Theorem. If f is continuous on [a, b, then

[ reyax = [ @ ade

The effectiveness of the Fundamental Theorem depends on having a suPplﬂfi
derivatives of functions. We therefore restate the Table of Antidifferentiation F@
from Section 4.9, together with a few others, in the notation of indefinite integre

formula can be verified by differentiating the function on the right side and obtail

integrand. For instance

d
{ sectxdx =tanx + C because e (tanx + C) = sec’x
X



integral in Example 1 is graphed
veral values of C. The value of
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fcf(x)dx=cjf(x)dx
[kax=kx+ C
fsinxdx = —cos.x + €
fseczxdx= tanx + C

fsecxtanxdx=secx + C

(1] TABLE OF INDEFINITE INTEGRALS -

JL7G) + g dx = [ £ dx + [ g(x)dx

n+l

fx"dx= 1+C (n# —1)

n +
fcosxdx=sinx+C

fcsczxdx = —cotx + C

Jcscx cotxdx = —cscx + C

Recall from Theorem 4.9.1 that the most general antiderivative on a given interval is
obtained by adding a constant to a particular antiderivative. We adopt the convention that
when a formula for a general indefinite integral is given, it is valid only on an inter-

val. Thus we write

1 1
[Sax=-—+c
X X

with the understanding that it is valid on the interval (0, %) or on the interval (—c°, 0). This
is true despite the fact that the general antiderivative of the function f(x) = 1/x2, x # 0, is

1
-——+C ifx<0

F(x) =

'_—+C2 1fx>0
X

EXAMPLE | Find the general indefinite integral

f (10x* — 2 sec®) dx

SOLUTION Using our convention and Table 1, we have

f(mx‘* — 2 sec) dx = 1ofx“dx - 2f sec’x dx

5

I

10%—2tanx+C=2x5—2tanx+C

You should check this answer by differentiating it. ]

cos 6
K EXAMPLE 2 Evaluate | = 0

SOLUTION This indefinite integral isn’t immediately apparent in Table 1, so we use trigo-
nometric identities to rewrite the function before integrating:

cos 6 1 \{cos®
= [ === de
f sin’@ a6 j(sin ())(sin 0)

=fcsc€cot6d0=—csc0+C O
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# Figure 2 shows the graph of the integrand in
Example 4. We know from Section 5.2 that the
value of the integral can be interpreted as the
sum of the areas labeled with a plus sign minus
the areas labeled with a minus sign.

¥
y=x—12sinx
10 25
+
0 [\ & 12
FIGURE 2

EXAMPLE 3 Evaluate j: (x* — 6x) dx.

50LUTION Using FTC2 and Table 1, we have
4 2713
T g X X
[ -6vax="-63 ]0
234 —-3.32) - (-0'—3.0%)
-27-0+0=—-6.75

I
0~
I N

&

Compare this calculation with Example 2(b) in Section 5.2.

EXAMPLE 4 Find {0'2 (x — 12 sin x) dx.

SOLUTION The Fundamental Theorem gives
12

12 ) X
L (x — 12sinx) dx = Ci 12(—cos x)

0

= 1(12)* + 12(cos 12 — cos 0) 13
=72+ 12cos 12 — 12
=60 + 12 cos 12

This is the exact value of the integral. If a decimal approximation is desired, we
a calculator to approximate cos 12. Doing so, we get

0‘2 (x — 12 sin x) dx =~ 70.1262

0 217 + tQ\/t_ =2 ]
EXAMPLE 5 Evaluate J.l ——7———dt.

SOLUTION First we need to write the integrand in a simpler form by carrying out tha
division:
2% + 'yt = 1
f—T\[—‘d’ = f @ + % — %)t
9
R 1
=2t —— | =2u+3+—
2 —1 1 - ! 1

:(2.9+§.93/z+$)_(2,1+§_13/2+%)‘

—18+18+Li-2-%3-1=325

APPLICATIONS

Part 2 of the Fundamental Theorem says that if f is continuous on [a, b], then
b
[/ £ dx = F) - F@

where F is any antiderivative of f. This means that F' = f, so the equation cafi v
ten as v

j *F(x) dx = F(b) — F(a)
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We know that F'(x) represents the rate of change of y = F(x) with respect to X and
F(b) — F(a)isthe change in y when x changes from a to b. [Note that y could, for instance,
increase, then decrease, then increase again. Although y might change in both directions,
F(b) — F(a) represents the net change in y.] So we can reformulate FTC2 in words as
follows.

THE NET CHANGE THEOREM Th

e integral of a rate of change is the net change:

j:F'(x) dx = F(b) — F(a)

This principle can be applied to all of the rates of change in the natural and social sci-
ences that we discussed in Section 3.7. Here are a few instances of this idea:

v If V(¢) is the volume of water in a reservoir at time f, then its derivative V'(?) is
the rate at which water flows into the reservoir at time . SO

j V(1) dt = V(n) — V(1)

is the change in the amount of water in the reservoir between time #, and time #.

« If [C](r) is the concentration of the product of a chemical reaction at time 7, then
the rate of reaction is the derivative d[C]/dt. So

5. dLC

[ ET]‘” = [C)(r) — [C1w)
is the change in the concentration of C from time 7, t0 time f.

« If the mass of a rod measured from the left end to a point x is m(x), then the
linear density is p(x) = m'(x). So

[[ o0 dx = m) = ml@

is the mass of the segment of the rod that lies between x = d and x = b.

« If the rate of growth of a population is dn /dt, then

] dn

—dt = nlt;) — nlt

[ S e = nle2) = n@)
is the net change in population during the time period from #, to 2. (The popu-
Jation increases when births happen and decreases when deaths occur. The net
change takes into account both births and deaths.)

« If C(x) is the cost of producing x units of a commodity, then the marginal cost is
the derivative C'(x). So
j:zC’(x) dx = C(xz) — Clx1)

is the increase in cost when production is ingreased from xi units to X, units.

« If an object moves along a straight line with position function s(f), then its
velocity is v(f) = s'(¢), so

v

j “o(t) dt = s(t2) — s(t)

n
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FIGURE 3

= To integrate the absolute value of (z), we use
Property 5 of integrals from Section 5.2 to split
the integral into two parts, one where »(r) < 0
and one where v(r) = 0.

is the net change of position, or displacement, of the particle during the
period from #; to 7. In Section 5.1 we guessed that this was true for the «
where the object movés in the positive direction, but now we have prove
is always true.

« If we want to calculate the distance the object travels during that time in
we have to consider the intervals when v(¢) = 0 (the particle moves to th
and also the intervals when v(¢) < 0 (the particle moves to the left). In b
the distance is computed by integrating | »(7) |, the speed. Therefore

v(t) | dt = total distance traveled

/]
J

Figure 3 shows how both displacement and distance traveled can be inter
in terms of areas under a velocity curve.

v

displacement = [ i v(t)dt=A, — A

Ji

. distance = [:1L‘(z)[dt=A1+A2+
A, / , 1 ~

The acceleration of the object is a(r) = v'(#), so
[*a(t) dr = v(t2) = v(1)
is the change in velocity from time #; to time 7.

i7 EXAMPLE 6 A particle moves along a line so that its velocity at time 7 is
v(f) = t* — t — 6 (measured in meters per second).

(a) Find the displacement of the particle during the time period 1 < 7 < 4.
(b) Find the distance traveled during this time period.

SOLUTION
(a) By Equation 2, the displacement is

s(4) — s(1)

fﬁmm:fw—z—mm

£ ! 9
3 2 : 2

This means that the particle moved 4.5 m toward the left.

(b) Note that v(f) = 1> — t — 6 = (¢t — 3)(¢ + 2) and so v(z) < 0 on the inte
and v(f) = 0 on [3, 4]. Thus, from Equation 3, the distance traveled is

f |o(t) | dt = Jaf [—v()]dt + f: o(?) dt

:Jq(—r2 +t+ 6)dt + J?(Iz —t—6)dt

1
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ower consumption in the city of San Francisco for a

EXAMPLE 7 Figure 4 shows the p
sured in hours starting at mid-

day in September (P is measured in megawatts; f is mea
night). Estimate the energy used on that day.

FIGURE 4 . )
Pacific Gas & Electric
SOLUTION Power is the rate of change of energy: P() = E'(1). So, by the Net Change

Theorem,
jj“ P() dt = joz“ E'(¢) dt = EQ24) — E(0)

is the total amount of energy used that day. We approximate the value of the integral
using the Midpoint Rule with 12 subintervals and At = 2:

jo“ P dt ~ [P(1) + P() + P(5) + -+ + P21) + P23)]Ar

2

(440 + 400 + 420 + 620 + 790 + 840 + 850
+ 840 + 810 + 690 + 670 + 550)(2)

= 15,840
The energy used was approximately 15,840 megawatt-hours. O

How did we know what units to use for energy in Example 7? The integral fg“ P(1) dt is
defined as the limit of sums of terms of the form P(t) At. Now P(t¥) is measured in
megawatts and Af is measured in hours, so their product is measured in megawatt-hours.
The same is true of the limit. In general, the unit of measurement for f: f(x) dx is the prod-

uct of the unit for f(x) and the unit for x.

differentiation that the formula is correct. 5-16 Find the general indefinite integral.

gx=m+c s.j(x2+x*2)dx 6.j(ﬁ7+z/§?)dx
xsinx + cosx + C 7. j(x“ — i+ ix - 2)dx 8. j(y3 + 1.8y* — 2.4y) dy
s i+ C j(l —H2+ ) dt 10. jv(vz +2)?dv
"dx=3lbz(bx‘ el b 16 I j’——xa R 12. [<u2 41 +i2> du
x : u
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13. ‘ (6 — csc B coth) db

15. j(l + tan’e) da

14. [ sec t(sec t + tan7) dt

¢ sin 2x
16. | dx

") sinx

several members of the family on the same screen.

17. J. (cos x+ %x) dx

18. j (1 — x*?dx

{A4 17-18 Find the general indefinite integral. Illustrate by graphing

19-42 Evaluate the integral.

19. |7 (6x* — 4x +5)dx
21. {: (5y4 = 6_)72 + 14) dy
23. [° Gu+ 1) du

4
25. (1 Vil + 1) dr

= 3 l :
217. ‘[,2 <4y 3 y3> dy
B |05 + 45

31, .{]4 \/gdx

33, fo” (4 sin 6 — 3 cos 6) df

do

- j(ﬂm 1 + cos’0

) cos’6

1+3
“M__\/_’E.dx
h x

37. N
39, [ ({5 + 457 dx

A 7 (- 2lx D

20. [}3 (1 + 2x — 4x%) dx

22. (: (w® — u® + u?) du
4

24, (0 20+ 5)3v — 1) dv

26. f:\/f?dt

2y + 5y
(, s dy

28.
(2 1\?
30. ‘] (x + ;) dx
32 ‘*9 36— 2 d
8 N X

r/3
34. J sec 6 tan 6 d0
/4

36. =
Jo sec“f

38, [0‘ (1 + x?) dx

sx— 1
40. .(, = dx

42.

N

f:”/z | sin x | dx

“77/3 sin 6 + sin 6 tan’6

43. Use a graph to estimate the x-intercepts of the curve

deé

y = x + x> — x* Then use this information to estimate the

area of the region that lies under the curve and above the
X-axis.

/A4 44. Repeat Exercise 43 for the curve y = 2x + 3x* — 2x5.

45. The area of the region that lies to the right of the y-axis
to the left of the parabola x = 2y — y? (the shaded region
the figure) is given by the integral foz (2y = ¥?) ay. (Tn!‘:
head clockwise and think of the region as lying below g
curve x = 2y — y? from y = 0 to y = 2.) Find the area of g
region.

The boundaries of the shaded region are the y-axis, the
y = 1, and the curve y = {‘/; Find the area of this regjg
writing x as a function of y and integrating with respect ’
(as in Exercise 45).

what does [1° w'(z) dt represent?

48. The current in a wire is defined as the derivative of the
charge: I(f) = Q'(1). (See Example 3 in Section 3.7.) What
does [”I(r) dt represent? '

il

If oil leaks from a tank at a rate of r(z) gallons per min

time ¢, what does [} r(z) dt represent?

0

50. A honeybee population starts with 100 bees and incre:
at a rate of n'(f) bees per week. What does 100 + fo‘s
represent?

51. In Section 4.7 we defined the marginal revenue functh
as the derivative of the revenue function R(x), where
number of units sold. What does ffo"gg R'(x) dx represe

52. If f(x) is the slope of a trail at a distance of x miles
start of the trail, what does [} f(x) dx represent?

53. If x is measured in meters and f(x) is measured in i
what are the units for [}"f(x) dx?

54. If the units for x are feet and the units for a(x) are P
foot, what are the units for da/dx? What units does

have?




function (in meters per second) is given
g along 2 line. Find (a) the displacement and
eled by the particle during the given time

tion function (in m/s®) and the initial velocity
article moving along a line. Find (a) the velocity at
distance traveled during the given time interval.

p(0)=5 0=<t<10

>

3 0 =-4 0<i1<3

ear density of a rod of length 4 m is given by
+ 2./x measured in kilograms per meter, where
d in meters from one end of the rod. Find the total

rod.

from the bottom of a storage tank at a rate of
0 — 41 liters per minute, where 0 < ¢t < 50. Find
of water that flows from the tank during the first

of a car was read from its speedometer at
intervals and recorded in the table. Use the Mid-
to estimate the distance traveled by the car.

v (mi/h) t(s) v (mi/h)
0 60 56
38 70 53
52 80 50
58 90 47
55 100 45
51

a volcano is erupting and readings of the rate (1)
fimatedals are spewed into the atmosphere are
@ble. The time ¢ is measured in seconds and the
are tonnes (metric tons) per second.

i 2 3 4 5 6

% 10 24 36 46 54 60

er and lower estimates for the total quantity Q(6)
>d _materials after 6 seconds.
Midpoint Rule to estimate Q(6).

al cost of manufacturing x yards of a certain
x) =3 — 0.01x + 0.000006x (in dollars per
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64.

65.

[y 331

yard). Find the increase in cost if the production level is raised
from 2000 yards to 4000 yards.

Water flows into and out of a storage tank. A graph of the rate
of change r(t) of the volume of water in the tank, in liters per
day, is shown. If the amount of water in the tank at time t = 0
is 25,000 L, use the Midpoint Rule to estimate the amount of

water four days later.

.
2000 — W
1000 4

0 1 2 3 4 1

~1000 L

Economists use a cumulative distribution called a Lorenz curve
to describe the distribution of income between households in a
given country. Typically, a Lorenz curve is defined on [0, 1]
with endpoints (0, 0) and (1, 1), and is continuous, increasing,
and concave upward. The points on this curve are determined
by ranking all households by income and then computing the
percentage of households whose income is less than or equal
to a given percentage of the total income of the country. For
example, the point (a/100, b/100) is on the Lorenz curve if the
bottom a% of the households receive less than or equal to b%
of the total income. Absolute equality of income distribution
would occur if the bottom a% of the households receive a% of
the income, in which case the Lorenz curve would be the line
y = x. The area between the Lorenz curve and the line y = x
measures how much the income distribution differs from
absolute equality. The coefficient of inequality is the ratio'of
the area between the Lorenz curve and the line y = x to the
area under y = Xx.
¥

1T (1’1)

(a) Show that the coefficient of inequality is twice the area
between the Lorenz curve and the line y = x, that is, show

that
coefficient of inequality = 2 jo] [x — L(x)]dx

(b) The income distgibution for a certain country is represented
by the Lorenz curve defined by the equation

s 7
. L(x) = x> +5x

What is the percentage of total income received by the
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bottom 50% of the households? Find the coefficient of
inequality.

% 66. On May 7, 1992, the space shuttle Endeavour was launched

on mission STS-49, the purpose of which was to install a new
perigee kick motor in an Intelsat communications satellite.
The table gives the velocity data for the shuttle between
liftoff and the jettisoning of the solid rocket boosters.

|
Event 1 Time (s) Velocity (ft/sw
Launch \ 0 0
Begin roll maneuver 10 185
End roll maneuver l 15 319
Throttle to 89% ‘ 20 447
Throttle to 67% k 32 742 {
| Throttle to 104% ‘ 59 1325 |
| Maximum dynamic pressure | 62 1445 ‘
Solid rocket booster separation 1 125 4151 ‘
1 | 1

S

(a) Use a graphing calculator or computer to model these
data by a third-degree polynomial.

(b) Use the model in part (a) to estimate the height reached
by the Endeavour, 125 seconds after liftoff.

WRITING
PROIJECT

NEWTON, LEIBNIZ, AND THE INVENTION OF CALCULUS

e

~—
The following exercises are intended only for those who have
already covered Chapter 7. -

67-71 Evaluate the integral.

. . 10 2e*
67. [ (sinx + sinh x) dx s ’ IUW
J L S X COth

J1 x

1 r2 (x — 1)}
69. ((X2+ 1+ Py 1>dx 70. —(‘{Tl)dx

dt

f72] The area labeled B is three times the area labeled A. Ex
b in terms of a.

y

0 a x

B
=

We sometimes read that the inventors of calculus were Sir Isaac Newton (1642-1727) and ;
Gottfried Wilhelm Leibniz (1646-1716). But we know that the basic ideas behind integration
were investigated 2500 years ago by ancient Greeks such as Eudoxus and Archimedes, and

methods for finding tangents were pioneered by Pierre Fermat (1601-1665), Isaac Barrow
(1630-1677), and others. Barrow—who taught at Cambridge and was a major influence on
Newton—was the first to understand the inverse relationship between differentiation and infegr&
tion. What Newton and Leibniz did was to use this relationship, in the form of the Fundamental
Theorem of Calculus, in order to develop calculus into a systematic mathematical discipling.

is in this sense that Newton and Leibniz are credited with the invention of calculus.

Read about the contributions of these men in one or more of the given references and wril
report on one of the following three topics. You can include biographical details, but the main
thrust of your report should be a description, in some detail, of their methods and notations:
particular, you should consult one of the sourcebooks, which give excerpts from the originaj
publications of Newton and Leibniz, translated from Latin to English. :

& The Role of Newton in the Development of Calculus

= The Role of Leibniz in the Development of Calculus

= The Controversy between the Followers of Newton and Leibniz over
Priority in the Invention of Calculus

References
1. Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1987),
Chapter 19.
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ere defined in Section 3.9.

du = f'(x) s
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2. Carl Boyer, The History of the Calculus and Its C
1959), Chapter V.

3. C. H. Edwards, The Historical Developm
1979), Chapters 8 and 9.

4. Howard Eves, An Introduction to
1990), Chapter 11.

5. C. C. Gillispie, ed., Dicti
See the article on Leibniz by Joseph Hofmann in
1. B. Cohen in Volume X.

6. Victor Katz, A History of Mathema
Chapter 12.

7. Morris Kline, Mathemati
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onary of Scientific Biography (New York: Scribner’s, 1974).
Volume VIII and the article on Newton by

tics: An Introduction (New York: HarperCollins, 1993),

cal Thought from Ancient to Modern Times (New York: Oxford

University Press, 1972), Chapter K4

Sourcebooks

1. John Fauvel and Jeremy Gray, eds.,

The History of Mathematics: A Reader (London:

MacMillan Press, 1987), Chapters 12 and 13.

2. D. E. Smith, ed., A Source
3. D. J. Struik, ed.,

book in Mathematics (New York: Dover, 1959), Chapter V.
A Sourcebook in Mathematics, 1 200-1800 (Princeton, N.J.: Princeton

University Press, 1969), Chapter V.

Because of the Fundamental Theorem,
our antidifferentiation formulas don’t tell us how t

M

To find this integral we
Here the “something extra” is a new variabl
able u. Suppose that we le
the differential of u is du =
to be interpreted as a di

—————_

K
e ——— 55| THE SUBSTITUTION RULE

it’s important to be able to find antiderivatives. But
o evaluate integrals such as

j2x 1+ x? dx

use the problem-solving strategy of introducing something extra.
e; we change from the variable x to a new vari-
t u be the quantity under the root sign in D,u=1+ x2. Then
— 2x dx. Notice that if the dx in the notation for an integral were
fferential, then the differential 2x dx would occur in (1) and so,

formally, without justifying our calculation, we could write

But now we can check that we have the correct answe

52x 1+x2dx=j 1+x22xdx='(\/;du

=3+ C= 2x2+ 12+ C

r by using the Chain Rule to differ-

entiate the final function of Equation 2:

In general, this method works whenever

4 [+ 1+ )= s 3+ V20 = 2 E

we have an integral that we can write in the

form [ f(g(x)) g'(x) dx. Observe that if F' = f, then

[ Flgfg @ dx = Flala) + €

I T o0 0 ot Ly
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w Check the answer by differentiating it.

——

because, by the Chain Rule,

= [Fa)] = Fg)g @)

If we make the “change of variable” or “substitution” u = g(x), then from Equat
we have

J F9()g')dr = Flg() + € = Fw) + € = [ Pl du
or, writing F' = f, we get
[ 19 g/ dx = [ £(u) e

Thus we have proved the following rule.

.

[4] THE SUBSTITUTION RULE Ifu = g(x) is a differentiable function whose range
is an interval I and £ is continuous on I, then

| [ (99 dx = | plu) e

Notice that the Substitution Rule for integration was proved using the Chain Rule
differentiation. Notice also that if u = g(x), then du = g'(x) dx, so a way to remember
Substitution Rule is to think of dx and du in (4) as differentials.

Thus the Substitution Rule says: It is permissible to operate with dx and du a
integral signs as if they were differentials.

EXAMPLE | Find fx‘cos(x“ + 2) dx.
SOLUTION We make the substitution u = x* + 2 because its differential is du = 4x° dx,
which, apart from the constant factor 4, occurs in the integral. Thus, using x* dx = du

and the Substitution Rule, we have

fx%os(x“ + 2)dx = [cosu idu Zﬁfcos udu

1 .
=gsinu + C

=3ssin(x* +2) + C
Notice that at the final stage we had to return to the original variable x.

The idea behind the Substitution Rule is to replace a relatively complicated 1

by a simpler integral. This is accomplished by changing from the original variablé
a new variable u that is a function of x. Thus, in Example 1, we replaced the il
J x*cos(x* + 2) dx by the simpler integral ! { cos udu. :
The main challenge in using the Substitution Rule is to think of an appropriate §
tution. You should try to choose u to be some function in the integrand whose difft
also occurs (except for a constant factor). This was the case in Example 1. If tha
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possible, try choosing u to be some complicated part of the integrand (perhaps the inner
function in a composite function). Finding the right substitution is a bit of an art. It’s not
unusual to guess wrong; if your first guess doesn’t work, try another substitution.

EXAMPLE 2 Evaluate f V2x + 1dx.

SOLUTION | Let u = 2x + 1. Then du = 2 dx, so dx = du/2. Thus the Substitution Rule
gives

f\/2x—+ldx=j\/;-dzl=%ju”2du

1 u??
~ 232

=3i@2x+ 12 +C

+C=%u3/2+C

SOLUTION 2 Another possible substitution is u = /2x + 1. Then

dx
du=-———2 = ) dx =+2x + 1ldu=udu
V2x

(Or observe that u? = 2x + 1, so 2udu = 2 dx.) Therefore
j\/2x+ 1dx=fu-udu=fu2du

3
=i‘3—+c=§(2x+1)3/2+c O

2 EXAMPLE 3 Find j \/—-I%—dx.
- &4X

SOLUTION Letwu = 1 — 4x2 Then du = —8xdx, so xdx = —; du and

x 1
=i =i
=—12Vu)+Cc=-3J/T-4x>+C O

The answer to Example 3 could be checked by differentiation, but instead let’s check
it with a graph. In Figure 1 we have used a computer to graph both the integrand

f(x) = x/s/1 — 4x? and its indefinite integral g(x) = —3+/1 — 4x? (we take the case
C = 0). Notice that g(x) decreases when f(x) is negative, increases when f(x) is positive,
and has its minimum value when f(x) = 0. So it seems reasonable, from the graphical evi-
dence, that g is an antiderivative of f.

EXAMPLE 4 Calculate _f cos 5x dx.

SOLUTION If we let u = 5x, then du = 5dx, so dx:= 1 du. Therefore

fcosSxd =§fco§udu=§sinu+C=§sin5x+C O
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This rule says that when using a substitution
in a definite integral, we must put everything in
terms of the new variable «, not only x and dx ,
but also the limits of integration. The new limits |
of integration are the values of u that correspond
tox =aandx = b.
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EXAMPLE 5 Find ’ V1 + x? x3dx.

SOLUTION An appropriate substitution becomes more obvious if we factor x> as x4

|

u =1+ x2 Then du = 2xdx, so xdx = du/2. Also x> = u — 1, so x* = (1~ 1y

- xdx

JV1
f T

2

‘ 1+ x2xdx=

Il

1
2

B —

‘[\/E(zf — 2u + 1) du

%j W = 2u®* + u'?) du

(%um _ 2-%145/2 + 2 2 x/o) +0

=11+ 2P =31+ 2P+ 501+ 2+ e

DEFINITE INTEGRALS

When evaluating a definite integral by substitution, two methods are possible. One mgl
is to evaluate the indefinite integral first and then use the Fundamental Theorem.

instance, using the result of Example 2, we have

[: JV2x + 1dx= ‘ V2x + 1 dx]?,

=P — 07" =

/2 4
=1@x+ 1)

(27 o 1) 2()

Another method, which is usually preferable, is to change the limits of integration

the variable is changed.

rg(b)

[ flg) g dx = |

g9(a)

[_Bj THE SUBSTITUTION RULE FOR DEFINITE INTEGRALS If g/ is continuous on
[a, b] and f is continuous on the range of u = g(x), then

f(u) du

PROOF Let F be an antiderivative of f. Then, by (3), F(g(x)) is an antiderivative OF S
f(g(x)) g'(x), so by Part 2 of the Fundamental Theorem, we have

[ (g0 ') dx = Flg()]. = Flg(b) — Flgla)

But, applying FTC2 a second time, we also have

g(b)

2 EXAMPLE 6 Evaluate '[04 V2x + 1 dx using (5).

' f(w) du = Flu )0 = F(g(b) — F(g(@)




The substitution u = 2x + 1
[0, 4] by a factor of 2 and
he right by 1 unit. The Substitu-
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SOLUTION Using the substitution from Solution 1 of Example 2, we have u = 2x + 1 and
dx = du/2. To find the new limits of integration we note that

whenx =0, u=20) + 1 =1 and whenx=4, u=24)+1=9
Therefore f: 2x + 1dx = f%\/;d” = % . %ua/z]T
e %(93/2 _ 13/2) — ?

Observe that when using (5) we do not return to the variable x after integrating. We

en in Example 7 is an

the two areas are equal. simply evaluate the expression in u between the appropriate values of u. O
Y &,
3 = 3
y=v2x +l/

2 2 ' Ju

=7

B B B
1 1
//

0 4 x 0 1 9 u

2 dx
EXAMPLE 7 Evaluate L (3——5—)2
— 5%

SOLUTION Let u = 3 — 5x. Then du = —5dx, sodx = —du/5. When x = 1, u = —2 and
when x = 2, u = —7. Thus

f;dx__z_lfﬁd_u
1 (3 — 5x)? 5J-2 u?

1 117 1|7
z-?[_?]fs—u]ﬂ
=l<_L+L>=L -

s\ 7 2 14

SYMMETRY

The next theorem uses the Substitution Rule for Definite Integrals (5) to simplify the cal-
culation of integrals of functions that possess symmetry properties.

[6] INTEGRALS OF SYMMETRIC FUNCTIONS Suppose f is continuous on [—a,al.
(a) If f is even [ f(—x) = f(x)], then [*_ f(x)dx =2 [; f(x) dx.

(b) If f is odd [f(—x) = —f(x)], then [*_ f{x)dx = 0.
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() fodd, [ fx)dr=0 and so
FIGURE 3 jl tan x dx=0
-1 1+ x*+x
EXERCISES
1-6 Evaluate the integral by making the given substitution. EX j‘ 2/ 1dx, u= N \

l. jcos Ixdx, u=3x

2. jx3(2 +xdx, u=2+x*

PROOF We split the integral in two:

7] jj(lf(X) dx= j_oaf(x) dx + j:f(x) dx = —jo_af(x) dx + j:f(x) dx

In the first integral on the far right side we make the substitution # = —x. Then
du = —dx and when x = —a, u = a. Therefore

[ @ dx = = [ fu - = [ de
and so Equation 7 becomes
[ f@dx = [(ywde+ [[1@dx
(a) If f is even, then f(—u) = f() so Equation 8 gives
[ f(x)dx = jo £(u) du + jo F(x)dx =2 jo £(x)dx

(b) If f is odd, then f (—u) = —f(u) and so Equation 8 gives

jjaf(x) dx = ‘j:f(u) du + j:f(x) A =0

Theorem 6 is illustrated by Figure 3. For the case where f is positive and even, paﬁ
says that the area under y = f(x) from —a toa is twice the area from O to a becaus
symmetry. Recall that an integral j: f(x) dx can be expressed as the area above the ¥+
and below y = f(x) minus the area below the axis and above the curve. Thus part (b)
the integral is 0 because the areas cancel.

EXAMPLE 8 Since f(x) = x® + 1 satisfies f(—x) = f(x), it is even and so

f (xS + 1)dx=zf (x6 + 1) dx
-2 0

=2[%x7 +x]g=2(]%§' + 2)=2~87i

EXAMPLE 9 Since f(x) = (tan x)/(1 + x? + x*) satisfies f(—x) = —f(x), it is odd

dt,
4. \ ——» =1-6t
j (1 - 61 "



sinfdd, u=cosb

ate the indefinite integral.

@sz(ﬁ + 5)° dx

2 dx 10. [ (3 + 2% dr

~ .
§)/2x + x2 dx (12, jmdx

1
’ J‘ (5¢ + 4)*7 a

g+ b’ 16, [ sec 26 tan 206
ax + bx? .
dt 18. jJ; sin(1 + x¥/2) dx
",o sin°0 df "26. [ (1 + tan 6)° sec?g o
- 22.[9556—7;@@
cot x csc’x dx 24. j cc)szt\/—_—_‘ljt+——tarﬁ—
C'x tan x dx 26. f sin ¢ sec*(cos 1) dt

e dx 128. j\/—l——_—de
dx 30. jxa/xz ¥ 1dx

gluate the indefinite integral. Illustrate and check that
1s reasonable by graphing both the function and its

sin\/;
32.j 7

34, j tan’6 sec*6 d6

‘=Valuate the definite integral.

(//36\' jz J4 + 3x dx
\ J

1)25 dx
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37. [ X1 + 2x°)° dx 3. | Y7 % cos(x?) dx
0

o j.oﬂ sec’(t/4) dt 40. jll//: csc at cot rt dt
2 .
7S oy w2 Xx°sinx
41. j_”/ﬁ tan’0 d6 42. J_"/Z T
43 f”’_dx_ a4 fﬂ/z e
“Jo 3(1+2x)2 I COS x sin(sin x) ax

45, J.:x\/xz +a?dx (a>0) joax\/az — x2 dx

2 - [* X
47. f} x/x = 1 dx ,@jo —————m dx
N

-2
49. f e L

1/2 x3

50. LT/ 2 sin@mt/T — o) dt

51-52 Use a graph to give a rough estimate of the area of the
region that lies under the given curve. Then find the exact area.

5l.y=+2x+1, 0sxs1

52, y=2sinx —sin2x, 0sxs< 7

53. Evaluate ﬁz (x + 3)y/4 — x? dx by writing it as a sum of
two integrals and interpreting one of those integrals in terms
of an area.

54. Evaluate f(: x+/1 — x* dx by making a substitution and inter-
preting the resulting integral in terms of an area.

55. Breathing is cyclic and a full respiratory cycle from the _
beginning of inhalation to the end of exhalation takes about 5 s.
The maximum rate of air flow into the lungs is about 0.5 L/s.
This explains, in part, why the function f(£) = 1 sin(27rt/5)
has often been used to model the rate of air flow into the
lungs. Use this model to find the volume of inhaled air in the
lungs at time 7.

56. A model for the basal metabolism rate, in kcal/h, of a young
man is R(z) = 85 — 0.18 cos(7#/12), where t is the time in

hours measured from 5:00 AM. What is the total basal metab-

olism of this man, [* R(r) dt, over a 24-hour time period?

If f is continuous and f: £(x)dx = 10, find j: f(2%) dx.

58. If f is continudus and j: f(x)dx = 4, find j: xf(x?) dx.

v
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59.

60.
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If £ is continuous on R, prove that

(b (—a

| f(=x)dx = | f(x) dx
For the case where f(x) = 0and 0 < a < b, draw a diagram
to interpret this equation geometrically as an equality of areas.

If f is continuous on R, prove that

btc

" flx + c)dx = [ £(x) dx

Ja+c

For the case where f(x) = 0, draw a diagram to interpret this
equation geometrically as an equality of areas.

[61.] If @ and b are positive numbers, show that

62.

63.

64.

(I x(1 — x)bdx = “l xb(1 — x)*dx
Jo JO

If f is continuous on [0, 7], use the substitution u = 7 — x t0
show that

,( xf(sin x) dx = g [0” F(sin x) dx

If f is continuous, prove that

‘.um’zf (cos x) dx = ‘:/rzf(sin x) dx

Use Exercise 63 to evaluate [ cos’x dx and [ sin’x dx.

5 REVIEW

The following exercises are intended only for those who haye
already covered Chapter 7.

65—82 Evaluate the integral.

65 ( . ix3x 66. ‘ e* sin(e”) dx
(In x)? dx
67. | —— 68.
D[ x 4% ax + b (a = 0)

[69. ‘ e*1 + e* dx 70. fe“""’ sin ¢ dt

7. [ e secixd . [,
. ) e sec’x ax . i 1 T xz X
1+ ¢ sin(In x
7] | ——5 dx 74, | s
J 1+ x° X
e i o
75. [ ————dx 76, [ ———dx
J 1+ cos’x J 1+ cos’x
7. [ cotxdx 78, [——dx
J J1+x*
et dx 1 —x?
[79. [ Y 80. ‘(0 xe™* dx
et + 1 f12 sin”'x
Bl | 82. | Wi

83. Use Exercise 62 to evaluate the integral

» Xxsinx
[ d

Jo 1+ cos’™x

CONCEPT CHECK

(a) Write an expression for a Riemann sum of a function f.
Explain the meaning of the notation that you use.

(b) If f(x) = 0, what is the geometric interpretation of a
Riemann sum? Illustrate with a diagram.

(c) If f(x) takes on both positive and negative values, what is
the geometric interpretation of a Riemann sum? Illustrate
with a diagram.

. (a) Write the definition of the definite integral of a function

from a to b.

(b) What is the geometric interpretation of vfabf(x) dx if
f(x) =07

(c) What is the geometric interpretation of f: f(x) dx if f(x)
takes on both positive and negative values? Illustrate with a
diagram.

. State both parts of the Fundamental Theorem of Calculus.

. (a) State the Net Change Theorem.

(b) If () is the rate at which water flows into a reservo
does [ r(z) dt represent?

v

Suppose a particle moves back and forth along a straigh
with velocity »(f), measured in feet per second, and acce
tion a(?).

(a) What is the meaning of [2° v(z) dt?

(b) What is the meaning of [}2°| »(z) | dt?

60
(c) What is the meaning of [}° a(t) dt?
(a) Explain the meaning of the indefinite integral f f)

(b) What is the connection between the definite integral
[? f(x) dx and the indefinite integral [ f(x)dx?

o

~

. Explain exactly what is meant by the statement that “di
tiation and integration are inverse processes.”

8. State the Substitution Rule. In practice, how do you us
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Quiz
or the statement is true or false. If it is true, explain why.
why or giveran example that disproves the statement.

are continuous on [a, b], then

() + g)dx = [ fG) dx + [ g0 dx

continuous on [a, b], then

nuous on [a, b], then

Lb 5f(x)dx =5 j‘:f(x) dx

_continuous on [a, b], then ,
jb xf(x)dx = x Lbf(x) dx

ontinuous on [a, b] and f(x) = 0, then

7. If  and g are Continuous and f(x) = g(x) fora < x < b, then
J.bf(x) dx = '[b g(x) dx

8. If f and g are differentiable and f (x) = g(x) fora <x <b,
then f'(x) = g'(x) fora < x <b.

Vs o, SINX _
9. J._‘<x 6x~ + (1+x4)2>dx 0

10. js (ax* 4+ bx + ¢)dx =2 js (ax? + c) dx
-5 0

11 3
11 J:Z;-;dx = _E
12. foz (x — x?) dx represents the area under the curve y = x — b
from 0 to 2.

13. All continuous functions have derivatives.
14. All continuous functions have antiderivatives.

I5. If f is continuous on [a, b], then

%( R dx) = /)

ven graph of f to find the Riemann sum with six
Take the sample points to be (a) left endpoints and
jts. In each case draw a diagram and explain what
sum represents.

y J ]

.

ur subintervals, taking the sample points to be right
ts. Explain, with the aid of a diagram, what the
sum represents.

(b) Use the definition of a definite integral (with right-end-
points) to calculate the value of the integral

jﬂz (x* — x)dx

(c) Use the Fundamental Theorem to check your answer to

part (b).
(d) Draw a diagram to explain the geometric meaning of the

integral in part (b).

3. Evaluate

Ll (x+/1- xz)dx
by interpreting it in terms of areas.

4. Express

n

lim Y, sin x; Ax
= =1

as a definite integral on the interval [0, 7r] and then evaluate
the integral.
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5. If ¢ f(x) dx = 10 and [ f(x) dx = 7, find [; f(x) dx.

(&S] 6. (a) Write [ (x + 2x°) dx as a limit of Riemann sums,
taking the sample points to be right endpoints. Use a
computer algebra system to evaluate the sum and to
compute the limit.

(b) Use the Fundamental Theorem to check your answer to
part (a).

5 7. The following figure shows the graphs of f, f’, and
e fo f(2) dr. 1dentify each graph, and explain your choices.

8. Evaluate:

a2 d - X
(a) fo E (sm E cos ?) dx

d (=2 . x X
(b) ; L sin 2 cos 3 dx

d n t t
(©)— "/zsin—cos§dt

dx 2

9-28 Evaluate the integral, if it exists.

9. _[12 (8x* + 3x?) dx 10. LT (x*—8x+ 7)dx
1. fol (1 —x%)dx 12, L‘ (1 —x)dx
9 \/; = 2u2 1 4 2
13. | S du 4. .[0 (Yu + 1) du
1 2 5 2,
15. {307 + 17 dy t6. [Ty +7 dy
5 dt 1,
17. j} —(t——4)2_ 18. L Sln(37Tf) dt
' 1 sinx
19. | 0% cos(v® :
9 JO v* cos(v’) dv 20 fq T 2 dx
as  titant x+2
21. —] 22. | ————d
,{7,/4 2 + cost ! ( Vx% + 4x *

23. [ sin 7t cos 7t dt 24. j sin x cos(cos X)dx

/8 /4
25. | sec 201an 2049 26 [ (1 + tan 1 sogly

27. {: |x* — 4| dx

28. _[:l‘/;_lldx

1 29-30 Evaluate the indefinite integral. Illustrate and che, -
ck thy

your answer is reasonable by graphing both the function and jt
antiderivative (take C = 0).

29. J‘ COS X

x3
——d 30. | —/——
V1 + sinx * jw/xz-l-ldx

— 88

[A431. Use a graph to give a rough estimate of the area of the reg
that lies under the curve y = x/x,0 < x <4.Then find
exact area.

[A4 32. Graph the function f(x) = cos’x sin’x and use the graph{
guess the value of the integral [ f(x) dx. Then evaluate f
integral to confirm your guess.

33-38 Find the derivative of the function.

N :
3. F() = | i 34. F(x) = [ i+ sind
x sin x l G Iz
_ 2 _
35. g(x) = ‘L cos(t%) dt 36. g(x) .(1 T [4d
_ [x cosb ot
37. y= L} 0 dé 38. y= L‘ sin(r*) dt

39-40 Use Property 8 of integrals to estimate the value of th
integral.

39. fm dx 40. fj

3 x+ 1

dx

41-42 Use the properties of integrals to verify the inequality:

—_—

. 2
4. J“n/z s x do= \/—

1
41. lezcos xdx < 3

/4 X

43, Use the Midpoint Rule with n = 6 to approximate
[2 sin(x*) dx.

44. A particle moves along a line with velocity function
v(f) = t* — t, where v is measured in meters per secondf:r
Find (a) the displacement and (b) the distance traveled by
the particle during the time interval [0, 5].

S



/) be the rate at which the world’s oil is consumed,

s measured in years starting at 7 = 0 on January 1
d r(7) is measured in barrels per year. What does
represent?

)8

s

was used to record the speed of a runner at the
en in the table. Use the Midpoint Rule to estimate
ce the runner covered during those 5 seconds.

t(s) | v(m/s) t(s) | v(m/s)

0 0 3.0 10.51

0.5 4.67 3.5 10.67

1.0 7.34 4.0 10.76

15 8.86 45 10.81
2.0 9.73 5.0 10.81

25 10.22 ]

here the graph of 7 is as shown. Use the Midpoint
th six subintervals to estimate the increase in the bee
ion during the first 24 weeks.

—>

12

4 8 16 20 24 ¢t
(weeks)
o) = =%~ 1 if -3<x<0
—v1—-x? ifO0sx<|]

e f; f(x) dx by interpreting the integral as a
nce of areas.

continuous and [ f(x) dx = 6, evaluate
in 6) cos 6 d6.
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50. The Fresnel function S(x) = [ sin(3#?) dt was introduced

51.

52.

53.

54.

55.

56.

in Section 5.3. Fresnel also used the function
C(x) = J.x COS(%WIZ) dt
0
in his theory of the diffraction of light waves.
(a) On what intervals is C increasing?

(b) On what intervals is C concave upward?

(c) Use a graph to solve the following equation correct to two
decimal places:

J: cos(37t?) dt = 0.7

(d) Plot the graphs of C and S on the same screen. How are
these graphs related?

If £ is a continuous function such that

foxf(t)dt=xsinx + J:lfT(t)tzdz

for all x, find an explicit formula for f(x).

Find a function f and a value of the constant ¢ such that
2j‘f(z)dz= 2sinx — 1
If £ is continuous on [a, b], show that

2" FRF @ dx = [FOF - [f@F
Find zin})% VTR .
If £ is continuous on [0, 1], prove that

~].olf(x) dx = J.olf(l — x)dx

Evaluate
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PROBLEMS

& The principles of problem solving are
discussed on page 54.

PLUSC

Before you look at the solution of the following example, cover it up and first
the problem yourself.

. X (xsint
EXAMPLE | Evaluate lim < dt).

x—3 X — 3 J3 t
SOLUTION. Let’s start by having a preliminary look at the ingredients of the func
happens to the first factor, x/(x — 3), when x approaches 3? The numerator af
and the denominator approaches 0, so we have

X X
— o a5 x— 37 and — —0 as x—>3
%= 3 x—3

The second factor approaches f; (sin £)/t dt, which is 0. It’s not clear what hag
function as a whole. (One factor is becoming large while the other is becomin
So how do we proceed?

One of the principles of problem solving is recognizing something familiar
part of the function that reminds us of something we’ve seen before? Well, the

rx Sin t

dt
Ja ¢
has x as its upper limit of integration and that type of integral occurs in Part 1
Fundamental Theorem of Calculus:
d (" x
— | f0d = 1(x)

This suggests that differentiation might be involved.

Once we start thinking about differentiation, the denominator (x — 3) remi
something else that should be familiar: One of the forms of the definition of tl
tive in Chapter 3 is

F(x) — F
F(a) = lim £ — @)
x—a X =
and with ¢ = 3 this becomes
F(x) — F(3
F'(3) = lim —L)-()———Q

=3 X—3
So what is the function F in our situation? Notice that if we define

(x Sinf
Flx) = J3 [

then F(3) = 0. What about the factor x in the numerator? That’s just a red her
let’s factor it out and put together the calculation:

dt

x sin t
. 3 5“; di
lim (—— [* SR dt) =limx + lim————
=3 \x—3J3 ¢ x—3 x—3 x—3
F(x) — F(3
= 3 g 0 T
x—3 X = 3
sin 3
=3F'(3) =3 3 (FTC1)

sin 3




PROBLEMS

. Ifxsin mx = JOX £(2) dt, where f is a continuous function, find f(4).

. Find the maximum value of the area of the region under the curve y = 4x — x* from x = a to

. (a) Evaluate

x=a+ 1,foralla > 0.

. If f is a differentiable function such that f(x) is never 0 and LX f() dt = [ f(x)]* for all x, find f.

. (a) Graph several members of the family of functions f(x) = (2cx — x?)/c” for ¢ > 0 and look

at the regions enclosed by these curves and the x-axis. Make a conjecture about how the areas
of these regions are related.

(b) Prove your conjecture in part (a).

(c) Take another look at the graphs in part (a) and use them to sketch the curve traced out by the

vertices (highest points) of the family of functions. Can you guess what kind of curve this is?
(d) Find an equation of the curve you sketched in part (c).

I f(x) = f;’(” \/—T—;l——_rtTdt, where g(x) = jo [1 + sin(t?)] dt, find f'(w/2).

. If f(x) = [ x?sin(z?) dt, find ().

. Find the interval [a, b] for which the value of the integral Pe+x- x?) dx is a maximum.

10000
. Use an integral to estimate the sum > .

i=1
[x] dx, where n is a positive integer.

ls
(b) Evaluate fab [x] dx, where a and b are real numbers with 0 < a < b.

2 sin
, Bind X (jl JT+u du) dt.

dx

. Suppose the coefficients of the cubic polynomial P(x) = a + bx + cx? + dx? satisfy the equation

PRIV

a+—+—+—=

2 3 4

Show that the equation P(x) = 0 has a root between 0 and 1. Can you generalize this result for an

nth-degree polynomial?

. A circular disk of radius r is used in an evaporator and is rotated in a vertical plane. If it is to be

partially submerged in the liquid so as to maximize the exposed wetted area of the disk, show that
the center of the disk should be positioned at a height r/s/1 + 7% above the surface of the liquid.

. Prove that if f is continuous, then J: fu)(x — u) du = J: (j: f@) dt) du.

. The figure shows a region consisting of all points inside a square that are closer to the center than

to the sides of the square. Find the area of the region.

1 1 1
1 . T 4+ e —=——].
Eva]uate}ﬂ(\/r—lml \/,7 n+ 2 \/rT‘/n-i'n)

. For any number c, we let f.(x) be the smaller of the two numbers (x — ¢)?and (x — ¢ — 2)%. Then

we define g(c) = f(; f.(x) dx. Find the maximum and minimum values of g(c) if =2 < c¢ < 2.




