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3.1 | DERIVATIVES AND RATES OF CHANGE

The problem of finding the tangent line to a curve and the problem of finding the velocity
of an object both involve finding the same type of limit, as we saw in Section 2.1. This spe-
cial type of limit is called a derivative and we will see that it can be interpreted as a rate A
of change in any of the sciences or engineering. §

TANGENTS

If a curve C has equation y = f(x) and we want to find the tangent line to C at the point
P(a, f(a)), then we consider a nearby point Q(x, f(x)), where x # a, and compute the slope
of the secant line PQ:

f(x) — fla)

e AR
Then we let Q approach P along the curve C by letting x approach a. If mpy approaches a
number m, then we define the tangent t to be the line through P with slope m. (This
amounts to saying that the tangent line is the limiting position of the secant line PQ as Q
approaches P. See Figure 1.)

[T] DEFINITION The tangent line to the curve y = f(x) at the point P(a, f(a)) is
the line through P with slope

. f) —fla)
m=lim ——

x—a X —a

provided that this limit exists.

In our first example we confirm the guess we made in Example 1 in Section 2.1.

I EXAMPLE | Find an equation of the tangent line to the parabola y = x? at the
GURE 1| point P(1, 1).

SOLUTION Here we have @ = 1 and f(x) = x? so the slope is

. =y .. =1
m 1 =

=1 lim
x—1 X — = X — 1

o x=1Dx+1)
=|lim———

x—1 x—1
=lirrll(x+1)=1+l=2

#intslope form for a line through the Using the point-slope form of the equation of a line, we find that an equation of the

5, 1) with slope m: tangent line at (1, 1) is
Y=yn=mx-x) !

y—1=2(x—-1) or y=2x—1 |

We sometimes refer to the slope of the tangent line to a curve at a point as the slope of
the curve at the point. The idea is that if we zoom in far enough toward the point, the curve
looks almost like a straight line. Figure 2 illustrates this procedure for the curve y = x?in
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. Recall from Section 2.1: The distance
{in meters) fallen after ¢ seconds is 4.9¢2,
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In general, suppose an object moves along a straight line according to an equation of
motion s = f(z), where s is the displacement (directed distance) of the object from the ori-
gin at time ¢. The function f that describes the motion is called the position function
of the object. In the time interval from r =a to t = a + h the change in position is
fla + h) — f(a). (See Figure 5.) The average velocity over this time interval is

: displacement fla+ h) — fa)
average velocity = : =

time h
which is the same as the slope of the secant line PQ in Figure 6.

Now suppose we compute the average velocities over shorter and shorter time intervals
[a, a + h]. In other words, we let & approach 0. As in the example of the falling ball, we
define the velocity (or instantaneous velocity) v(a) at time t = a to be the limit of these
average velocities:

(3] v(a) = lim _h__f(a + 4 - fla)

h—0 h

This means that the velocity at time 7 = a is equal to the slope of the tangent line at P
(compare Equations 2 and 3).

Now that we know how to compute limits, let’s reconsider the problem of the fall-
ing ball.

i EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the
CN Tower, 450 m above the ground.

(a) What is the velocity of the ball after 5 seconds?

(b) How fast is the ball traveling when it hits the ground?

SOLUTION We will need to find the velocity both when 7 = 5 and when the ball hits the
ground, so it’s efficient to start by finding the velocity at a general time ¢ = a. Using the
equation of motion s = f(f) = 4.9¢2, we have

fla + h) — f(a) 49(a + h)* — 4.94*

A R h
. 4.9(a® + 2ah + h* - a?) . 4.9Qah + h?)
= lim = lim ———88=
h—0 h h—0 h

= 1im 4.92a + h) = 9.8a

h—0

(a) The velocity after 5 s is »(5) = (9.8)(5) = 49 m/s.

(b) Since the observation deck is 450 m above the ground, the ball will hit the ground at
the time #, when s(¢,) = 450, that is,

4.9¢f = 450

. 450 [450
HZE and L= Ex()ﬁs

The velocity of the ball as it hits the ground is therefore

This gives

450
o(ty) = 9.8t = 9.8 - 94 m/s -
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® f'(a) is read “f prime of a’”

DERIVATIVES

n that the same type of limit arises in finding the slope of a tangent 1
). In fact, limits of the form

We have see
(Equation 2) or the velocity of an object (Equation 3

. fla+h) —fla)
him————
h—0 h’

arise whenever we calculate a rate of change in any of the sciences or engineering, such

a rate of reaction in chemistry or a marginal cost in economics. Since this type of 1i

occurs so widely, it is given a special name and notation.

DEEINITION The derivative of a function f at a number a, denoted by
f'(a), is

: . fla+h) —fla)
| f@=lm Ty
“ if this limit exists.
. -

— x — a and h approaches 0 if and only

If we write x = a + h, then we have h
n of the derivative, a:

approaches a. Therefore an equivalent way of stating the definitio
saw in finding tangent lines, is

o e SO = S
(5] f'(@) = lim ~———"

7 EXAMPLE 4 Find the derivative of the function f(x) = x* — 8x + 9at the numbe

50LUTION From Definition 4 we have
fla+ h) — fla)

f'(a) = lim .
L [(a+h)2—8(a+h)+9]—[az—8c1+9]
—erE?) h
) a2+2ah+h2—8a—8h+9—a2+8a—9
= lim
h—0 h s
2ah + h* — 8h
- i = 1lim (2a + h — 8)
h—0 h—0
=2a—8

We defined the tangent line to the curve y = f(x) at the point P(a, f(a)) to be t
that passes through P and has slope m given by Equation 1 or 2. Since, by Defini
this is the same as the derivative f '(a), we can now say the following.

(a, f(a)) whose slop

The tangent line to y = f (x) at (a, f(a)) is the line through
equal to f'(a), the derivative of f at a.
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e n7

If we use the point-slope form of the equation of a line, we can write an equation of the
tangent line to the curve y = f(x) at the point (a, f(a)):

y = fla) = f@)(x — a)

1 EXAMPLE 5 Find an equation of the tangent line to the parabola y = x> — 8x + 9 at
the point (3, —6).

50LUTION From Example 4 we know that the derivative of f(x) = x* — 8x + 9 at the

number a is f'(a) = 2a — 8. Therefore the slope of the tangent line at (3, —6) is

f'(3) = 2(3) — 8 = —2. Thus an equation of the tangent line, shown in Figure 7, is
y—(—6) = (=2)(x — 3) or y=—2x O

RATES OF CHANGE

Suppose y is a quantity that depends on another quantity x. Thus y is a function of x and
we write y = f(x). If x changes from x; to X2, then the change in x (also called the incre-
ment of x) is

Ax =x, — x3

and the corresponding change in y is

Ay = f(x2) = f(x1)
The difference quotient

Ay _ fl) = fx)

Ax X2 — X1

is called the average rate of change of y with respect to x over the interval [x;, x»] and
can be interpreted as the slope of the secant line PQ in Figure 8.

By analogy with velocity, we consider the average rate of change over smaller and
smaller intervals by letting x, approach x; and therefore letting Ax approach 0. The limit
of these average rates of change is called the (instantaneous) rate of change of y with
respect to x at x = x,, which is interpreted as the slope of the tangent to the curve y = f(x)

at P(xy, f(x1)):

' . A . x) — fx
(6] instantaneous rate of change = lim 2 _ lim M
Ax—0 AX X2—>X| X2 — X1

We recognize this limit as being the derivative f'(x1).
We know that one interpretation of the derivative f '(a) is as the slope of the tangent line
to the curve y = f(x) when x = a. We now have a second interpretation:

The derivative f'(a) is the instantaneous rate of change of y = f(x) with respect
to x when x = a.
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f :

FIGURE 9
The y-values are changing rapidly
at P and slowly at Q.

« Here we are assuming that the cost function
is well behaved:; in other words, C(x) doesn't
oscillate rapidly near x = 1000.

The connection with the first interpretation is that if we sketch the curve y = f(x), then
the instantaneous rate of change is the slope of the tangent to this curve at the point where
x = a. This means that when the derivative is large (and therefore the curve is steep, as
at the point P in Figure 9), the y-values change rapidly. When the derivative is small, the
curve is relatively flat and the y-values change slowly.

In particular, if s = f(#) is the position function of a particle that moves along a straight
line, then f'(a) is the rate of change of the displacement s with respect to the time 7. In
other words, f'(a) is the velocity of the particle at time t = a. The speed of the particle is
the absolute value of the velocity, that is, |f(a)|.

In the next example we discuss the meaning of the derivative of a function that is
defined verbally.

2 EXAMPLE 6 A manufacturer produces bolts of a fabric with a fixed width. The cost of
producing x yards of this fabric is C = f(x) dollars.

(a) What is the meaning of the derivative f'(x)? What are its units?

(b) In practical terms, what does it mean to say that £'(1000) = 9?

(c) Which do you think is greater, £'(50) or f(500)? What about £'(5000)?

SOLUTION
(a) The derivative f'(x) is the instantaneous rate of change of C with respect to x; that
is, f'(x) means the rate of change of the production cost with respect to the number of
yards produced. (Economists call this rate of change the marginal cost. This idea is dis-
cussed in more detail in Sections 3.7 and 4.7.)
Because
) . AC

f'x) = lim —=
the units for f'(x) are the same as the units for the difference quotient AC/Ax. Since
AC is measured in dollars and Ax in yards, it follows that the units for f'(x) are dollars
per yard.
(b) The statement that f '(1000) = 9 means that, after 1000 yards of fabric have been
manufactured, the rate at which the production cost is increasing is $9/yard. (When

¥ = 1000, C is increasing 9 times as fast as X.)
Since Ax = 1 is small compared with x = 1000, we could use the approximation

AC AC
FIOO00): w8 ==t = i=mmmin= AC
Ax 1

and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.

(c) The rate at which the production cost is increasing (per yard) is probably lower
when x = 500 than when x = 50 (the cost of making the 500th yard is less than the cost
of the 50th yard) because of economies of scale. (The manufacturer makes more efficient
use of the fixed costs of production.) So

£'(50) > £'(500)

But, as production expands, the resulting large-scale operation might become inefficient
and there might be overtime costs. Thus it is possible that the rate of increase of costs
will eventually start to rise. So it may happen that

£1(5000) > £(500) o8




SECTION 3.1 DERIVATIVES AND RATES OF CHANGE [||| 119

In the following example we estimate the rate of change of the national debt with
respect to time. Here the function is defined not by a formula but by a table of values.

K7 EXAMPLE 7 Let D(¢) be the US national debt at time z. The table in the margin gives
approximate values of this function by providing end of year estimates, in billions of
dollars, from 1980 to 2000. Interpret and estimate the value of D'(1990).

SOLUTION The derivative D'(1990) means the rate of change of D with respect to ¢ when
t = 1990, that is, the rate of increase of the national debt in 1990.

. .. D(») — D(1990)
D1990) = L = 7990

So we compute and tabulate values of the difference quotient (the average rates of
change) as shown in the table at the left. From this table we see that D'(1990) lies some-
where between 257.48 and 348.14 billion dollars per year. [Here we are making the
reasonable assumption that the debt didn’t fluctuate wildly between 1980 and 2000.] We
estimate that the rate of increase of the national debt of the United States in 1990 was

e
; t D(t)
.

1980 930.2

1985 1945.9

1990 3233.3

1995 4974.0 : :

2000 5674.2 According to Equation 5,

D(z) — D(1990)
¢ t — 1990

1980 230.31
1985 257.48
1995 348.14 the average of these two numbers, namely
2000 244.09

D'(1990) = 303 billion dollars per year

Another method would be to plot the debt function and estimate the slope of the tan-

i€ units for the average rate of change AD/At
3 the units for AD divided by the units for Az,
m!v billions of dollars per year. The instan-
{aneaus rate of change is the limit of the aver-

gent line when ¢ = 1990.

g fates of change, so it is measured in the
units: billions of dollars per year.

EXERCISES

In Examples 3, 6, and 7 we saw three specific examples of rates of change: the veloci-
ty of an object is the rate of change of displacement with respect to time; marginal cost is
the rate of change of production cost with respect to the number of items produced; the
rate of change of the debt with respect to time is of interest in economics. Here is a small
sample of other rates of change: In physics, the rate of change of work with respect to time
is called power. Chemists who study a chemical reaction are interested in the rate of
change in the concentration of a reactant with respect to time (called the rate of reaction).
A biologist is interested in the rate of change of the population of a colony of bacteria with
respect to time. In fact, the computation of rates of change is important in all of the natu-
ral sciences, in engineering, and even in the social sciences. Further examples will be given
in Section 3.7.

All these rates of change are derivatives and can therefore be interpreted as slopes of
tangents. This gives added significance to the solution of the tangent problem. Whenever
we solve a problem involving tangent lines, we are not just solving a problem in geome-
try. We are also implicitly solving a great variety of problems involving rates of change in
science and engineering.

k. A curve has equation y = f(x).
(a) Write an expression for the slope of the secant line
through the points P(3, f(3)) and Q(x, f(x)).
(b) Write an expression for the slope of the tangent line at P.

What do you notice about the curve as you zoom in toward
the origin?
3. (a) Find the slope of the tangent line to the parabola
y = 4x — x” at the point (1, 3)
(i) using Definition 1 (ii) using Equation 2

2. Graph the curve y = sin x in the viewing rectangles [—2, 2]

by [~2,2],[~1, 1] by [~1, 1], and [~0.5, 0.5] by [—0.5, 0.5].

(b) Find an equation of the tangent line in part (a).
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(c) Graph the parabola and the tangent line. As a check on

your work, zoom in toward the point (1, 3) until the
parabola and the tangent line are indistinguishable.

4, (a) Find the slope of the tangent line t0 the curve y = X — x°

at the point (1, 0)

(i) using Definition 1 (ii) using Equation 2

(b) Find an equation of the tangent line in part (a).

(c

) Graph the curve and the tangent line in successively
smaller viewing rectangles centered at (1, 0) until the
curve and the line appear to coincide.

5-8 Find an equation of the tangent line t0 the curve at the

given
5Jy

@y

point.
-1
=z . (3,2) 6. y=2x"— 5% (-1,3)
x—2
2
=Jx, (LD 8 y=—0 0, 0)

(x + 1)

(a) Find the slope of the tangent to the curve

y=3+4x"~ x? at the point where x = d-

(b) Find equations of the tangent lines at the points (1,5)

and (2, 3).

(c) Graph the curve and both tangents on a common screen.

10. (a

) Find the slope of the tangent to the curve y =1/ \/; at
the point where x = @

(b) Find equations of the tangent lines at the points (1,1)
1

(c

and (4, .
) Graph the curve and both tangents on 2 common screen.

1. (a) A particle starts by moving 0 the right along a horizontal

line; the graph of its position function is shown. When is
the particle moving to the right? Moving to the left?
Standing still?

(b) Draw a graph of the velocity function.

s (meters)

4 6 t(seconds)

12. Shown are graphs of the position functions of two runners, A
and B, whorun a 100-m race and finish in a tie.

s (meters)

(a) Describe and compare how the runners run the race.

(b) At what time is the distance between the runners the
greatest?
(c) At what time do they have the same velocity?

[13) If a ball is thrown into the air with a velocity of 40 ft/s, its

I5.

. The displacement (in meters) of a particle moving in a

height (in feet) after seconds is given byy = 40t — 1612
Find the velocity when t = 2.

. If a rock is thrown upward on the planet Mars with a velocity

of 10 m/s, its height (in meters) after seconds is given by
H =10t — 1.861%.

(a) Find the velocity of the rock after one second.

(b) Find the velocity of the rock when t = a.

(c) When will the rock hit-the surface?

(d) With what velocity will the rock hit the surface?

b

The displacement (in meters) of a particle moving in a g
straight line is given by the equation of motion s = 1/1%,
where ¢ is measured in seconds. Find the velocity of the
particle at timest=a,t=L,t= 2,andt = 3.

straight line is given pys=1—8t+ 18, where 1 is mea-
sured in seconds.
(a) Find the average velocity over each time interval: 2
@ [3.4] (ii) [3.5.4] 1
(iii) [4, 5] (iv) [4,4.5]

(b) Find the instantaneous velocity when 1 = 4.
(c) Draw the graph of s as a function of ¢ and draw the secant
lines whose slopes aré the average velocities in part (a)
and the tangent line whose slope is the instantaneous

velocity in part (b).

[i7.] For the function g whose graph is given, arrange the follow-

ing numbers in increasing order and explain your reasoning:

0o g2 g2 9@

g'(0)

[18) (a) Find an equation of the tangent line t0 the graph of

y = g(x)atx = 5if g(5) = —3andg'(5) =4 .
(b) If the tangent line to y = f(x) at (4, 3) passes through the -
point (0, 2), find £(4) and f'(4). 4

[19] Sketch the graph of a function f for which () =0,

£1(0) = 3, f'(1) = 0,and @) = -1.

20. Sketch the graph of a function g for which g0)=g'0) = 0,

gi—1)= -1,¢9'(1) =3, and g'2) = 1.




I f(x) = 3x2 — 5x, find £'(2) and use it to find an equation
of the tangent line to the parabola y = 3x? — 5x at the
point (2, 2).

fgx) =1— %2, find ¢'(0) and use it to find an equation of
the tangent line to the curve y = 1 — x3 at the point (0, 1).

1 (a) If F(x) = 5x/(1 + x?2), find F'(2) and use it to find an
equation of the tangent line to the curve y = 5x/(1 + x?)
at the point (2, 2).

' (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

(a) If G(x) = 4x* — x*, find G'(a) and use it to find equa-
tions of the tangent lines to the curve y = 4x* — x” at
the points (2, 8) and (3, 9).

~ (b) Illustrate part (a) by graphing the curve and the tangent

lines on the same screen.

25-30 Find f'(a).

26. f(t) =1t* — 5t
i =2t + 1 _ x2+1

() - —— 2. f(x) = ——

30. f(x) =+/3x+ 1

31-36 Each limit represents the derivative of some function f at
‘Some number a. State such an f and a in each case.

L+ -1 J16+h —2
k. lim 8 1 32, lim~——
S h h—0 h
e — 3) tanx — 1
L lim —— S e o
g X — 5 K xl-lgy}a x— w/4

Lottt —-2
36. lim———
t—1 t—

@ lim

cos(m + h) + 1
h—0 h

_-3_38 A particle moves along a straight line with equation of
o‘ Olion s = £(r), where s is measured in meters and ¢ in seconds.
ind the velocity and the speed when ¢ = 5.

£ = 100 + 50t — 4.9 38 f()=1t"—1t

8% A warm can of soda is placed in a cold refrigerator. Sketch
the grgph of the temperature of the soda as a function of time.
Is the initial rate of change of temperature greater or less than
the rate of change after an hour?

g :a;or?t turkey iSO taken from an oven when its temperature

. ;Ched 185.F and is placed on a table in a room where

g tplframre is 75°F. The graph shows how the tempera-
¢ turkey decreases and eventually approaches room
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temperature. By measuring the slope of the tangent, estimate
the rate of change of the temperature after an hour.

T (°F)
200
L
100 P

0 30 60 90 120 150 ¢ (min)

41. The table shows the estimated percentage P of the population
of Europe that use cell phones. (Midyear estimates are given.)

F Year 1998 1999 2000 2001 2002 2003

P 28 39 ' 55 68 77 83

(a) Find the average rate of cell phone growth
(i) from 2000 to 2002 (ii) from 2000 to 2001
(iii) from 1999 to 2000
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2000 by
taking the average of two average rates of change. What
are its units?

(c) Estimate the instantaneous rate of growth in 2000 by mea-
suring the slope of a tangent.

42. The number N of locations of a popular coffeehouse chain is
given in the table. (The numbers of locations as of June 30
are given.)

Year 1998 1999 2000 2001 2002

N 1886 2135 3501 4709 5886

(a) Find the average rate of growth
(i) from 2000 to 2002 (ii) from 2000 to 2001
(iii) from 1999 to 2000
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2000 by
taking the average of two average rates of change. What
are its units?

(c) Estimate the instantaneous rate of growth in 2000 by mea-
suring the slope of a tangent.

[43.] The cost (in dollars) of producing x units of a certain com-

modity is C(x) = 5000 + 10x + 0.05x2.

(a) Find the average rate of change of C with respect to x
when the production level is changed
(i) from x = 100 to x = 105
(ii) from x = 100 to x = 101

(b) Find the instantaneous rate of change of C with respect to
x when x = 100. (This is called the marginal cost.
Its significance will be explained in Section 3.7.)
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If a cylindrical tank holds 100,000 gallons of water, which
can be drained from the bottom of the tank in an hour, then
Torricelli’s Law gives the volume V of water remaining in the
tank after # minutes as

t 2
- — s <
V(1) 100,000(1 60) 0=<tr=<60

Find the rate at which the water is flowing out of the tank (the
instantaneous rate of change of V with respect to ) as a func-
tion of #. What are its units? For times ¢ = 0, 10, 20, 30, 40,
50, and 60 min, find the flow rate and the amount of water
remaining in the tank. Summarize your findings in a sentence
or two. At what time is the flow rate the greatest? The least?

[45.) The cost of producing x ounces of gold from a new gold mine

46.

&

is C = f(x) dollars.

(a) What is the meaning of the derivative f "(x)? What are its
units?

(b) What does the statement f'(800) = 17 mean?

(c) Do you think the values of f'(x) will increase or decrease
in the short term? What about the long term? Explain.

The number of bacteria after 7 hours in a controlled

laboratory experiment is n = f(#).

(a) What is the meaning of the derivative f'(5)? What are its
units?

(b) Suppose there is an unlimited amount of space and nutri-
ents for the bacteria. Which do you think is larger, f'(5)
or f'(10)? If the supply of nutrients is limited, would that
affect your conclusion? Explain.

Let T(7) be the temperature (in °F) in Dallas # hours after
midnight on June 2, 2001. The table shows values of this
function recorded every two hours. What is the meaning of
T'(10)? Estimate its value.

r02\4 6‘810 12 | 14

48.

49.

T 73 73 } 70 69 \ 72 81 88 91

The quantity (in pounds) of a gourmet ground coffee that is

sold by a coffee company at a price of p dollars per pound

is 0 = f(p).

(a) What is the meaning of the derivative f'(8)? What are its
units?

(b) Is f'(8) positive or negative? Explain.

The quantity of oxygen that can dissolve in water depends on
the temperature of the water. (So thermal pollution influences

the oxygen content of water.) The graph shows how oxygen

solubility S varies as a function of the water temperature 7.

(a) What is the meaning of the derivative § "(T)? What are its
units?

(b) Estimate the value of S'(16) and interpret it.

SA.
(mg/L)
16#.

00 8 16 24 32 40 T(°C)

Adapted from Environmental Science: Living Within the System
of Nature, 2d ed.; by Charles E. Kupchella, © 1989. Reprinted by
permission of Prentice-Hall, Inc., Upper Saddle River, NJ

50. The graph shows the influence of the temperature 7' on the
maximum sustainable swimming speed S of Coho salmon.
(a) What is the meaning of the derivative S'(T)? What are it

units?
(b) Estimate the values of S'(15) and S '(25) and interpret
them.
)
(cm/s)
20T
of " 1 2  TCO

51-52 Determine whether f'(0) exists.

1
xsin— ifx#0

BL) f(x) = x
0 if x=0

1
x?sin— if x#0
52. f(x) = x
0 if x=0
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EARLY METHODS FOR FINDING TANGENTS

The first person to formulate explicitly the ideas of limits and derivatives was Sir Isaac Newton in
the 1660s. But Newton acknowledged that “If I have seen further than other men, it is because I
have stood on the shoulders of giants.” Two of those giants were Pierre Fermat (1601-1665) and
Newton’s teacher at Cambridge, Isaac Barrow (1630-1677). Newton was familiar with the meth-
ods that these men used to find tangent lines, and their methods played a role in Newton’s eventual
formulation of calculus.

The following references contain explanations of these methods. Read one or more of the
references and write a report comparing the methods of either Fermat or Barrow to modern
methods. In particular, use the method of Section 3.1 to find an equation of the tangent line to the
curve y = x* + 2x at the point (1, 3) and show how either Fermat or Barrow would have solved
the same problem. Although you used derivatives and they did not, point out similarities between
the methods.

I. Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1989),
pp. 389, 432.

2. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag,
1979), pp. 124, 132.

3. Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York: Saunders,
1990), pp. 391, 395.

4. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York:
Oxford University Press, 1972), pp. 344, 346.

THE DERIVATIVE AS A FUNCTION

In the preceding section we considered the derivative of a function f at a fixed number a:

fla+h) - f(a)
h

L 1@ = i

Here we change our point of view and let the number a vary. If we replace a in Equation 1
by a variable x, we obtain

fx+h) — f(x)

@ f1x) = lim :

Given any number x for which this limit exists, we assign to x the number f’(x). So we can
regard f' as a new function, called the derivative of f and defined by Equation 2. We
know that the value of f' at x, f'(x), can be interpreted geometrically as the slope of the
tangent line to the graph of f at the point (x, f(x)).

The function f’ is called the derivative of f because it has been “derived” from f by
the limiting operation in Equation 2. The domain of f” is the set {x | f'(x) exists} and may
be smaller than the domain of f.




1
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7 EXAMPLE | The graph of a function f is given in Figure 1. Use it to sketch the graph
of the derivative f "

SOLUTION We can estimate the value of the derivative at any value of x by drawing the
tangent at the point (x, f (x)) and estimating its slope. For instance, for x = 5 we draw
the tangent at P in Figure 2(a) and estimate its slope to be about %, so f'(5) = 1.5. This
allows us to plot the point P'(5, 1.5) on the graph of f' directly beneath P. Repeating
this procedure at several points, we get the graph shown in Figure 2(b). Notice that the
tangents at A, B, and C are horizontal, so the derivative is O there and the graph of f’

FIGURE |
crosses the x-axis at the points A, B',and C', directly beneath A, B, and C. Between A
and B the tangents have positive slope, SO £'(x) is positive there. But between B and C
the tangents have negative slope, SO f'(x)is negative there.
Visual 3.2 shows an animation of
(a)

Figure 2 for several functions.

FIGURE 2 (V)

7 EXAMPLE y 4
(a) If f(x) = £* — x, find a formula for f'(x).
(b) Nlustrate by comparing the graphs of f and f"




2
f

=2

2
/
7 f'
2

h 8

=2

We rationalize the numerator.
FIGURE 4
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SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the variable

is h and that x is temporarily regarded as a constant during the calculation of the limit.

5 fa+hn)—fx . [a+h - &+h] - =«
im —— = lim

f(x) - h—0 h h—0 h
X+ 3+ + R —x—h—-xtx
= lim
h—0 h
3x*h + 3xh> >+ h* — h
= lim
h—0 h
='1lin(1)(3x2+3xh+h2— D=3x2-1

(b) We use a graphing device to graph f and f’ in Figure 3. Notice that f'(x) = 0 when
f has horizontal tangents and f'(x) is positive when the tangents have positive slope. So
these graphs serve as a check on our work in part (a). O

EXAMPLE 3 If f(x) = J/x, find the derivative of f. State the domain of f

SOLUTION

£(x) = li TR .l v

h—0 h—0 h

=hm<¢r—ﬁ,m+¢;>

. fx+h) - f) _
m h —

h Jx+h+Jx

h—0

. x+h—x = lim 1

PRt h +Yx) 0 Jxth +Ax
1

1
RS

We see that f'(x) exists if x > 0, so the domain of f" is (0, ®). This is smaller than the
domain of f, which is [0, ©). O

Let’s check to see that the result of Example 3 is reasonable by looking at the graphs of
f and f' in Figure 4. When x is close to 0, J/x is also close to 0, so f'(x) = 1/(2 Jx)is
very large and this corresponds to the steep tangent lines near (0, 0) in Figure 4(a) and the
large values of f'(x) just to the right of 0 in Figure 4(b). When x is large, f'(x) is very small
and this corresponds to the flatter tangent lines at the far right of the graph of f.

y
1 ’ \
1 1 !
= 1
(@) flx)=Vx ®) f')=—rF
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SR
aloe

ad — bc

Gottfried Wilhelm Leibniz was born in Leipzig
in 1646 and studied law, theology, philosophy,
and mathematics at the university there, gradu-
ating with a bachelor’s degree at age 17. After
earning his doctorate in law at age 20, Leibniz
entered the diplomatic service and spent most of
his life traveling to the capitals of Europe on
political missions. In particular, he worked to
avert a French military threat against Germany
and attempted to reconcile the Catholic and
Protestant churches.

His serious study of mathematics did not begin
until 1672 while he was on a diplomatic mission
in Paris. There he built a calculating machine and
met scientists, like Huygens, who directed his
attention to the latest developments in mathe-
matics and science. Leibniz sought to develop a
symbolic logic and system of notation that would
simplify logical reasoning. In particular, the ver-
sion of calculus that he published in 1684 estab-
lished the notation and the rules for finding
derivatives that we use today.

Unfortunately, a dreadful priority dispute arose
in the 1690s between the followers of Newton
and those of Leibniz as to who had invented
calculus first. Leibniz was even accused of pla-
giarism by members of the Royal Society in
England. The truth is that each man invented
calculus independently. Newton arrived at his
version of calculus first but, because of his fear
of controversy, did not publish it immediately. So
Leibniz's 1684 account of calculus was the first
to be published.

1
EXAMPLE 4 Find f'if f(x) = :
ind ' if f(¥) = 5

SOLUTION

1-(x+h 1—-x
Fr+m)—f . 2+G+th 2+X
——'r—-=hm

h—0 h

f'(x) = lim

(l—x—h)(2+x)—(l—x)(2+x+h)

=1.
£30 h2 + x + h)2 + x)
" (2—x—2h—x2—xh)—(2—x+h—x2—xh)
= 1um
3o W2+ x + B2+
= lim =
o0 h(2 + x + B)(2 + X)
= lim =t N O
-0 (2 + x + B2+ x) (2 + x)?

OTHER NOTATIONS

If we use the traditional notation y = f(x) to indicate that the independent variable is x and
the dependent variable is , then some common alternative notations for the derivative are
as follows:

dy df d

fx)y=y= ol i Ef(x) = Df(x) = D:f(x)

The symbols D and d/dx are called differentiation operators because they indicate the
operation of differentiation, which is the process of calculating a derivative.

The symbol dy/dx, which was introduced by Leibniz, should not be regarded as a ratio =
(for the time being); it is simply a synonym for f'(x). Nonetheless, it is a very useful and
suggestive notation, especially when used in conjunction with increment notation. Refer-
ring to Equation 3.1.6, we can rewrite the definition of derivative in Leibniz notation in the
form

dy _ . Ay
e s A

If we want to indicate the value of a derivative dy/dx in Leibniz notation at a specific num-
ber a, we use the notation
dy
or —=
x=a dx x=a

which is a synonym for f'(a).

[3] DEFINITION A function f is differentiable at a if f'(a) exists. It is differen-
tiable on an open interval (a, b) [or (a, ) or (=, a) or (—, oo)] if it is differ-
entiable at every number in the interval.




FIGURE 3
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7 EXAMPLE 5 Where is the function f(x) = | x| differentiable?

SOLUTION If x > O, then | x| = x and we can choose / small enough that x + h > 0 and
hence | x + h| = x + h. Therefore, for x > 0, we have

I £ Bl £1
f'(x) = lim Y
+h) -
i EEP T it tim =1
h—0 h—0 h—0
and so f is differentiable for any x > 0.
Similarly, for x < 0 we have | x| = —x and h can be chosen small enough that
x+h<Oandso|x+h|=—(x+ h). Therefore, for x < 0,
I P ) Bl £
f'(x) = lim )
—(x+h) - (- —h
i =P =D iy T i (-1) = -1
h—0 h =0 h h—0

and so f is differentiable for any x < 0.
For x = 0 we have to investigate

£(0) = tim £0O + hh> ~ f(0)

_ o 10+ B[ = ]0]

(if it exists)
h—0 h

Let’s compute the left and right limits separately:

_Jo+hn|—10] _ . ¢ b
lim = lim — = lim — = lim 1 =1
h—0* h =0t h h—0+ h h—0"
0+ h|—10 h =
and lim | | —[of _ 1iml—l= lim — = lim (—=1) = —1
h—0~ h h—0- h h—0~ h—0~

Since these limits are different, f'(0) does not exist. Thus f is differentiable at all x
except 0.
A formula for f' is given by
1 if x>0

if x<0

and its graph is shown in Figure 5(b). The fact that f'(0) does not exist is reflected geo-
metrically in the fact that the curve y = | x| does not have a tangent line at (0, 0). [See
Figure 5(a).] O

Both continuity and differentiability are desirable properties for a function to have. The
following theorem shows how these properties are related.
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D

| [4] THEOREM If fis differentiable at a, then f is continuous at a.

|
| ]

-

PROOF To prove that f is continuous at @, we have to show that lim,—. f(x) = f(a). We

do this by showing that the difference f(x) — f(a) approaches 0 as x approaches a.
The given information is that f'is differentiable at a, that is,

‘, (@) = lim fx) — fla)

iva X — a4
‘ exists (see Equation 3.1.5). To connect the given and the unknown, we divide and multi-
ply f(x) — fl@) by x — a (which we can do when x # a):

) = fl@)
—————————X

X =0

a)

f(x) — fla) =

Thus, using the Product Law and (3.1.5), we can write

0 ~f@
= Q

X

lim [£(x) — f(@)] = lim

=1imw - lim (x — a)
x—a x—a x—a

= f@)-0=0

To use what we have just proved, we start with f(x) and add and subtract f(a):

lim f(x) = lim [f(a) + (f(x) = f@)]

x—a

= lim f(a) + lim [f(x) — f(a)]

x—a

= f(a) + 0 =f(a)

Therefore f is continuous at a.

cont

i
; [@ [ NOTE | The converse of Theorem 4 is false; that is, there are functions that are
uous but not differentiable. For instance, the function f(x) = |x| is continuous 2

because
lim f(x) = lim |x| =0 = £(0)

(See Example 7 in Section 2.3.) But in Example 5 we showed that f is not differentic

at 0.

HOW CAN A FUNCTION FAIL TO BE DIFFERENTIABLE?

e 5 is not differentiable at 0 and Figure
ly when x = 0. In general, if the graph
the graph of f has no tangent at this
(a), we find that the left and 3

We saw that the function y = | x| in Exampl
shows that its graph changes direction abrupt
function f has a “corner” or “kink” in it, then
and f is not differentiable there. [In trying to compute b

limits are different.]




vertical tangent
line

FIGURE 7

Three ways for f not to be
differentiable at a
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Theorem 4 gives another way for a function not to have a derivative. It says that if f is
not continuous at a, then f is not differentiable at a. So at any discontinuity (for instance,
a jump discontinuity) f fails to be differentiable.

A third possibility is that the curve has a vertical tangent line when x = g; that is, f
is continuous at a and

lim | ()] =

This means that the tangent lines become steeper and steeper as x — a. Figure 6 shows one
way that this can happen; Figure 7(c) shows another. Figure 7 illustrates the three possi-
bilities that we have discussed.

!

(a) A corner (b) A discontinuity (c) A vertical tangent

A graphing calculator or computer provides another way of looking at differentiabil-
ity. If f is differentiable at a, then when we zoom in toward the point (a, f(a)) the graph
straightens out and appears more and more like a line. (See Figure 8. We saw a specific
example of this in Figure 2 in Section 3.1.) But no matter how much we zoom in toward a
point like the ones in Figures 6 and 7(a), we can’t eliminate the sharp point or corner (see
Figure 9).

Y )’1

FIGURE 8 FIGURE 9
f is differentiable at a. f is not differentiable at a.

HIGHER DERIVATIVES

If f is a differentiable function, then its derivative f' is also a function, so f’ may have a
derivative of its own, denoted by (f')’ = f”. This new function f " is called the second
derivative of f because it is the derivative of the derivative of f. Using Leibniz notation,
we write the second derivative of y = f(x) as

d (dy)_dy
dx \ dx dx?
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N[>

FIGURE 10

m In Module 3.2 you can see how
changing the coefficients of a polynomial f
affects the appearance of the graphs of f,

f',and f".

EXAMPLE 6 If f(x) = x* — x, find and interpret f(x).

SOLUTION In Example 2 we found that the first derivative is f'(x) = 3x* — 1. So the sec-
ond derivative is

fuwﬂfﬂn=&3fu+2—fhj=ﬂgBu+h)_E_Bﬁ_”
. 3x2 4+ 6xh +3h2—1—-3x*+ 1
= lim =]

h—0 h h

in(l) (6x + 3h) = 6x

The graphs of £, f’, and f" are shown in Figure 10.
We can interpret f”(x) as the slope of the curve y = f'(x) at the point (x, f'(x)). In
other words, it is the rate of change of the slope of the original curve y = f(x).
Notice from Figure 10 that f”(x) is negative when y = f'(x) has negative slope
and positive when y = f '(x) has positive slope. So the graphs serve as a check on our

calculations.

In general, we can interpret a second derivative as a rate of change of a rate of char
The most familiar example of this is acceleration, which we define as follows.

If s = s(?) is the position function of an object that moves in a straight line, we kr
that its first derivative represents the velocity v(¢) of the object as a function of time:

o) = 5'(6) = -‘;—j

The instantaneous rate of change of velocity with respect to time is called the accelerat
a(?) of the object. Thus the acceleration function is the derivative of the velocity func
and is therefore the second derivative of the position function:

a(f) = v'(t) = s"(?)
or, in Leibniz notation,
dv d%
a = e— T ——2-
dt dt

The third derivative f” is the derivative of the second derivative: f” = (f")’
f"(x) can be interpreted as the slope of the curve y = f"(x) or as the rate of chang

f"(x). If y = f(x), then alternative notations for the third derivative are

" uy d dzy d3y
=y <x>=;<dx2> T

The process can be continued. The fourth derivative ™ is usually denoted by f @, In
eral, the nth derivative of f is denoted by f® and is obtained from f by differentiat

times. If y = f(x), we write

n

d"y
dxn

O )

EXAMPLE 7 If f(x) = x* — x, find f"(x) and f @(x).

SOLUTION In Example 6 we found that f "(x) = 6x. The graph of the second derivative
equation y = 6x and so it is a straight line with slope 6. Since the derivative f"(x) |




EXERCISES
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slope of f”(x), we have
) =6

is a constant function and its graph is a horizontal line. There-

"

for all values of x. So f
fore, for all values of x,
P =0 ]

We can interpret the third derivative physically in the case where the function is the
position function s = s(f) of an object that moves along a straight line. Because
s" = (s")" = a’, the third derivative of the position function is the derivative of the accel-
eration function and is called the jerk:

_da_ds
T =% T ae

Thus the jerk j is the rate of change of acceleration. It is aptly named because a large jerk
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

We have seen that one application of second and third derivatives occurs in analyzing
the motion of objects using acceleration and jerk. We will investigate another applica-
tion of second derivatives in Section 4.3, where we show how knowledge of f” gives us
information about the shape of the graph of f. In Chapter 12 we will see how second and
higher derivatives enable us to represent functions as sums of infinite series.

Use the given graph to estimate the value of each derivative. Match the graph of each function in (a)—(d) with the graph of

its derivative in I-IV. Give reasons for your choices.
(a) Y (b) Y

\

]

I

N}/*
[

0 x
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4-11 Trace or copy the graph of the given function f. (Assume
that the axes have equal scales.) Then use the method of Example
1 to sketch the graph of f” below it.

a. y T

(1L

| 12. Shown is the graph of the population function P(7) for yeast

| cells in a laboratory culture. Use the method of Example 1 to
graph the derivative P'(z). What does the graph of P’ tell us
about the yeast population?

P4 (yeast cells)

500

10 15 t(hours)

13. The graph shows how the average age of first marriage of
Japanese men has varied in the last half of the 20th centur
Sketch the graph of the derivative function M '(t). During
which years was the derivative negative?

271 /\//

251

1960 1970 1980 1990 2000

'
t

14. Make a careful sketch of the graph of the sine function a
below it sketch the graph of its derivative in the same ma
as in Exercises 4—11. Can you guess what the derivative
the sine function is from its graph?

BA[15] Let f(x) = x>

(a) Estimate the values of f'(0), f’(%), £'(1), and f'(2) b
using a graphing device to zoom in on the graph of f

(b) Use symmetry to deduce the values of f'(—3), f'(—
and f'(—2).

(c) Use the results from parts (a) and (b) to guess a forn
for f'(x).

(d) Use the definition of a derivative to prove that your |
in part (c) is correct.

B 16. Letf(x) = x°.

(a) Estimate the values of f'(0), £(3), £Q1), £'(2), and,
by using a graphing device to zoom in on the graph

(b) Use symmetry to deduce the values off’(-%), =
f'(=2), and f'(=3).

(c) Use the values from parts (a) and (b) to graph f".

(d) Guess a formula for f'(x).

(e) Use the definition of a derivative to prove that your
in part (d) is correct.

17-27 Find the derivative of the function using the definiti
derivative. State the domain of the function and the domain
derivative.

17. f(x) = 3% — 3
19. f(r) = 5t — 9¢

18. f(x) =mx +b
20. f(x) = 1.5x* — x
22. f(x) =x + VX

3+ x
1—3x

2. fx)=x*—3x+5

23] g(x) = V1 + 2x 24. f(x) =

B8] 60 = — 2. g(r)=—lf7
27. f(x) = x*




a) Sketch the graph of f (x) = /6 — x by starting with the
~ graphof y = J/x and using the transformations of Sec-
tion 1.3.
(b) Use the graph from part (a) to sketch the graph of f".
¢) Use the definition of a derivative to find f '(x). What are

the domains of fand f'?
.~ (d) Use a graphing device to graph f " and compare with your
' sketch in part (b).
a) If f(x) = x* + 2x, find f'(x).
(b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f".
@) = 1* — /1, find ().
- (b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f".
3| The unemployment rate U(f) varies with time. The table

(from the Bureau of Labor Statistics) gives the percentage of
unemployed in the US labor force from 1993 to 2002.

t U() t U(r)

1993 6.9 1998 4.5
1994 6.1 1999 42
1995 5.6 2000 4.0
1996 5.4 2001 4.7
1997 4.9 2002 5.8

(a) What is the meaning of U'(f)? What are its units?
(b) Construct a table of values for U'(z).

32, Let P(r) be the percentage of Americans under the age of 18
. attime 7. The table gives values of this function in census
years from 1950 to 2000.

.’: t P(1) t P(1)

1950 31:1 1980 28.0
1960 35.7 1990 25.7
1970 34.0 2000 257

(a) What is the meaning of P'(£)? What are its units?
(b) Construct a table of estimated values for P'(2).
- (¢) Graph P and P'.

(d) How would it be possible to get more accurate values
for P'(¢)?

,‘33-3§ The‘ graph of f is given. State, with reasons, the numbers
at which f is not differentiable.
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37. Graph the function f(x) = x + /| x|. Zoom in repeatedly,

first toward the point (—1, 0) and then toward the origin.
What is different about the behavior of f in the vicinity of
these two points? What do you conclude about the differen-
tiability of f?

Zoom in toward the points (1, 0), (0, 1), and (—1, 0) on the
graph of the function g(x) = (x> — 1)*°. What do you
notice? Account for what you see in terms of the differen-
tiability of g.

The figure shows the graphs of f, f', and f". Identify each
39 y
curve, and explain your choices.

B

40. The figure shows graphs of f, f’, f", and f". Identify each
curve, and explain your choices.

abcd
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41. The figure shows the graphs of three functions. One is the
position function of a car, one is the velocity of the car, and
one is its acceleration. Identify each curve, and explain your
choices.

74

42. The figure shows the graphs of four functions. One is the
position function of a car, one is the velocity of the car, one is
its acceleration, and one is its jerk. Identify each curve, and
explain your choices.

1

{9 43-44 Use the definition of a derivative to find f'(x) and f"(x).
Then graph f, f', and f” on a common screen and check to see if
your answers are reasonable.

43. f(x)=1+4x—x* 44, f(x) = 1/x

AR5 If f(x) = 2x2 — x°, find f'(x), f"(x), f "(x), and f“(x).
Graph f, f', f", and f" on a common screen. Are the
graphs consistent with the geometric interpretations of these
derivatives?

46. (a) The graph of a position function of a car is shown, where
s is measured in feet and ¢ in seconds. Use it to graph the
velocity and acceleration of the car. What is the accelera-
tion at t = 10 seconds?

S

-+

100 +

L '
t t

0 10 20 !

(b) Use the acceleration curve from part (a) to estimate the
jerk at ¢ = 10 seconds. What are the units for jerk?

47. Letf(x) = Vx.
(a) If a # 0, use Equation 3.1.5 to find f'(a).

A4 (d) Illustrate part (c) by graphing y = x

(b) Show that f'(0) does not exist.

(c) Show thaty = {/; has a vertical tangent line at (0, 0).
(Recall the shape of the graph of f. See Figure 13 in Sec
tion 1.2.)

48. (a) If g(x) = x**, show that ¢'(0) does not exist.
(b) If a # 0, ﬁm“l g'(a).

(c) Show that y = x has a vertical tangent line at (0, 0).
2/3

[49. Show that the function f(x) = |x — 6/ is not differentiable
at 6. Find a formula for f' and sketch its graph.

50. Where is the greatest integer function f(x) = [x] not differ-
entiable? Find a formula for f' and sketch its graph.

(a) Sketch the graph of the function f(x) = x|x|.
(b) For what values of x is f differentiable?
(c) Find a formula for f'.

52. The left-hand and right-hand derivatives of f at a are

defined by
(@) = i L2+ 9 =5
md o) = lig LEEN SO

if these limits exist. Then f'(a) exists if and only if these on
sided derivatives exist and are equal.
(a) Find f(4) andf";(4) for the function

0 if x<0
5—x if0o<x<4

fx) = ¢

S—=ux

if x=4

(b) Sketch the graph of f.
(c) Where is f discontinuous?
(d) Where is f not differentiable?

53. Recall that a function f is called even if f(=x) = f (x) for :
x in its domain and odd if f(—x) = —f(x) for all such x.
Prove each of the following.

(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

54. When you turn on a hot-water faucet, the temperature T of
the water depends on how long the water has been running
(a) Sketch a possible graph of T as a function of the time ?
that has elapsed since the faucet was turned on.
(b) Describe how the rate of change of T with respect to
varies as t increases.
(c) Sketch a graph of the derivative of T.

55. Let € be the tangent line to the parabola y = x? at the poin
(1, 1). The angle of inclination of € is the angle ¢ that ¢
makes with the positive direction of the x-axis. Calculate «
correct to the nearest degree.
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DIFFERENTIATION FORMULAS

k- |
h of f(x)=cis the
=¢,80 f(x) =0.

ph of f(x) = xis the
$0 flx) =1.

If it were always necessary to compute derivatives directly from the definition, as we did
in the preceding section, such computations would be tedious and the evaluation of some
limits would require ingenuity. Fortunately, several rules have been developed for finding
derivatives without having to use the definition directly. These formulas greatly simplify
the task of differentiation.

Let’s start with the simplest of all functions, the constant function f(x) = c. The graph
of this function is the horizontal line y = ¢, which has slope 0, so we must have f'(x) = 0.
(See Figure 1.) A formal proof, from the definition of a derivative, is also easy:

+ P —
feth) —f®) _.oc € = lm =1
h =0 h h—0

[ = lim

In Leibniz notation, we write this rule as follows.

DERIVATIVE OF A CONSTANT FUNCTION

d
E;(C)=O

POWER FUNCTIONS

We next look at the functions f(x) = x", where n is a positive integer. If n = 1, the graph
of f(x) = x s the line y = x, which has slope 1. (See Figure 2.) So

d
(1] ;(x)=l

(You can also verify Equation 1 from the definition of a derivative.) We have already
investigated the cases n = 2 and n = 3. In fact, in Section 3.2 (Exercises 15 and 16) we
found that

ae d
el =2 — (x3) = 352
(2] o (x*) 5% I (x°) = 3x
For n = 4 we find the derivative of f(x) = x* as follows:

. (x+ h)t—xt
lim ———————
h—0 h

fOr+B) = fx) _
h

f'(x) = lim

B x* + 4xh + 6x°h? + 4xh® + n* — x*
= lim
h—0 h

. 4x3h + 6x%h% + 4xhd + R4
= h

= }m(l) (4x® + 6x°h + 4xh® + h3) = 4x3
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The Binomial Thearem is given on
Reference Page 1.

Thus
d

= (x*) = 4x°

e see a pattern emerging. It seems tobea
/dx)(x") = nx"~". This turns out to
s the Binomial Theorem. 5‘

(1), (2),and (3), W
n is a positive integer, d
the second proof use

Comparing the equations in
reasonable guess that, when
be true. We prove it in two ways;

THE POWER RULE Ifnisa positive integer, then
d

— (x") = nx""

dx

1

FIRST PROOF The formula

" —a"=(x—aE""+ x"2g + oo +xa"? + at)

(or by summing the second

tiplying out the right-hand side
on 3.1.5 for f'(a) and the

can be verified simply by mul
f f(x) = x", we can use Equati

factor as a geometric series). I
equation above t0 write

x—=a X — 4

fx) = fla) x"—a’
x=a

fla)=tim-—"—-— = lim

=lm G+ x"la e xa"?+a"")
x—>a

=gl 4+aglat -+ aa"? + a"!

= nan-l

SECOND PROOF

h—0

+ h — + I’l 1 L n
£ = lim fe+m) = f@ _ o & )~ X
h—0 h h
ative of x* we had to expand (x + h)*. Here we need to expand

In finding the deriv
e the Binomial Theorem to do so:

(x + h)" and we us

xn + nxnvlh + n(n; 1) xn*2h2 4 oo + nxhn‘l + hn] - xn

f'(x) = lim m

= o h

= lim
h—0

-1
[nx"‘l + —-————n(n 5 )x""zh R e | ks h""]

n—1

= nx

because every term except the first has h as a factor and therefore approaches 0.
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We illustrate the Power Rule using various notations in Example 1.

EXAMPLE |
(a) If f(x) = x°, then f'(x) = 6x°. (b) If y = x'*°, then y’ = 1000x>”.

dy d
= ¢4 _—= 3 —(r}) = 2
(c) If y = t*, then y? 4, (d) o (r’) =3r

NEW DERIVATIVES FROM OLD

When new functions are formed from old functions by addition, subtraction, or multipli-
cation by a constant, their derivatives can be calculated in terms of derivatives of the old
functions. In particular, the following formula says that the derivative of a constant times
a function is the constant times the derivative of the function.

lIC INTERPRETATION OF

MULTIPLE RULE THE CONSTANT MULTIPLE RULE If ¢ is a constant and f is a differentiable func-

tion, then

d d
o [ef(0)] = ¢ fx)

PROOF Let g(x) = cf(x). Then

, Cogx+ k) —glv) . cfx+h) —cf(x)
by ¢ = 2 stretches the graph verti- g'(x) = an}) ! h £ - PE}) e h !
factor of 2. All the rises have been

but the runs stay the same. So th
o the Cl:f(x—i—h)—f(x)]

; dWh'ed, too. _ llm
h

h—0

. fx+h) —fx)
élim-———

h—0 h

cf'(x)

(by Law 3 of limits)

EXAMPLE 2

@ L @xt) =3 () = 36x°) = 12¢
® L (9 =Lpend = (DG @ =10 = -1 0

The next rule tells us that the derivative of a sum of functions is the sum of the
derivatives.

3 THE SUM RULE If fand g are both differentiable, then
BAime notation, we can write the

d d d
< [f(x) +g(x)] = Ef (x) + = g(x)
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PROOF Let F(x) = f(x) + g(x). Then

Flx) = hifé F(x + h})l — F(x)

" [f(x + h) + glx + B)] — [f(x) + 9()]

B ’ILIIE) h ‘

i [f(x h)—f) , gt h) - g(x)]
h—0 h h

~ i SO W—f&) o gt h) — g(x) by L 1)
h—0 l’l h—0 h

=f'(x) + g'(x)

The Sum Rule can be extended to the sum of any number of functions. For instanc
using this theorem twice, we get

(f+g+h =[f+g9 +h =(f+g +h=Ff+g +H

By writing f — g as f + (—1)g and applying the Sum Rule and the Constant Multip
Rule, we get the following formula.

THE DIFFERENCE RULE If fand g are both differentiable, then

4
dx

g(x)

d d
== [/ ~ 9] = - @) -

|
|
|

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be combin
with the Power Rule to differentiate any polynomial, as the following examples demonstral

EXAMPLE 3

d
= (x® + 12x° — 4x* + 10x> — 6x + 5)
x

d

d d d d
== G+ 12— (%) -4— @G+ 10—
Ir (x*) Ir (x?) I (x*)

3 _ gL d
dx & 6dx (x)+dx(

= 8x7 + 12(5x*) — 4(4x®) + 10(3x*) — 6(1) + 0
=8x7 + 60x* — 16x> + 30x* — 6

i7 EXAMPLE 4 Find the points on the curve y = x* — 6x2 + 4 where the tangent line i
horizontal.

SOLUTION Horizontal tangents occur where the derivative is zero. We have

dy d  , d d
—_—=— —6—(xH)+— ¢«
dax dx &) dx L. dx()

=4x% — 12x + 0 = 4x(x* — 3)
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Thus dy/dx = 0 if x = 0 or x* =3 =0, thatis, x = *_'\/3_. So the given curve has
horizontal tangents when x = 0, \/3T , and —+/3. The corresponding points are (0, 4),
(\/37, —-5), and (—\/?T —5). (See Figure 3.) a

EXAMPLE 5 The equation of motion of a particle is s = 21° — 5t* + 3t + 4, where s is
measured in centimeters and ¢ in seconds. Find the acceleration as a function of time.
What is the acceleration after 2 seconds?

SOLUTION The velocity and acceleration are

ds 5
v(?) i 6t 0r+3

dv
= ———= 2 —_
a(t) it 12t — 10

The acceleration after 2 s is a(2) = 14 cm/s. E

Next we need a formula for the derivative of a product of two functions. By analogy
with the Sum and Difference Rules, one might be tempted to guess, as Leibniz did three
centuries ago, that the derivative of a product is the product of the derivatives. We can see,
however, that this guess is wrong by looking at a particular example. Let f (x) = x and
g(x) = x*. Then the Power Rule gives f'(x) =1 and ¢'(x) = 2x. But (fg)(x) = %% S0

(fg)'(x) = 3x% Thus (fg)' # f'g'. The correct formula was discovered by Leibniz (soon
after his false start) and is called the Product Rule.

Bl THE PRODUCT RULE If f and g are both differentiable, then
write the Product Rule in prime

T L[99 = 1)~ (o] + 9(x) == /(0]

PROOF Let F(x) = f(x)g(x). Then

P = lim Flx + h}: ~ F(x)

— fx + Wglx + h) — f(x)g(x)
= nm

h—0 h

In order to evaluate this limit, we would like to separate the functions f and g as in
the proof of the Sum Rule. We can achieve this separation by subtracting and adding the
term f(x + h)g(x) in the numerator:

fx + h)gx + h) — flx + h)g(x) + fx + Bgl) — fF(X)g(x)
h

oot ) = gla) , oy SxH 1) f(x)]

F'(x) = lim
h—0

= lim [f(x + h)

St h) )

gt h) — gl
h h

il R * lim et -l

= f(x)g'(x) + g(x)f'(x)
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In prime notation we can write the Quotient

Rule as

CHAPTER 3 DERIVATIVES

Note that lims_o g(x) = g(x) because g(x) is a constant with respect to the variable #.
Also, since f is differentiable at x, it is continuous at x by Theorem 3.2.4, and so
limy—of(x + h) = f(x). (See Exercise 55 in Section 2.5.) r

In words, the Product Rule says that the derivative of a product of two functions is th
first function times the derivative of the second funcnon plus the second function times th,
derivative of the first function.

EXAMPLE 6 Find F'(x) if F(x) = (6x*)(7x*).
S0LUTION By the Product Rule, we have

F'(x) = (6x%) ?;1; (7x*) + (7x*) 5; (6x%)

= (6x3)(28x%) + (7x*)(18x?)
168x°® + 126x° = 294x°¢ [

Notice that we could verify the answer to Example 6 directly by first multiplying th
factors:

F(x) = (6x%)(7x*) = 42x7 = F'(x) = 42(7x%) = 294x¢

But later we will meet functions, such as y = x? sin x, for which the Product Rule is th
only possible method.

7 EXAMPLE 7 If h(x) = xg(x) and it is known that g(3) = 5 and ¢'(3) = 2, find A'(3).
S0LUTION Applying the Product Rule, we get

d d d
h(x) = Tx [xg(x)] = x 2 [9(x)] + g(x) i [x]

= xg'(x) + g(x)

Therefore h'(3)=39'3) +g9(3)=3-2+5=11 [

THE QUOTIENT RULE If f and g are differentiable, then

(i)’ _of —fg
g g

\
|
| ] 9L (1] - ) - (]
| _

\

[9(x)]?

PROOF Let F(x) = f(x)/g(x). Then

fath) )
Fa+h) = F&) _ . goth) g

F’(x) - ;11’3) h h—0 h
oSG+ gl — f@glx + )
h—>0 hg(x + h)g(x)

We can separate f and g in this expression by subtracting and adding the term f(x)g(x)
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GENERAL POWER FUNCTIONS

The Quotient Rule can be used to extend the Power Rule to the case where the exponent
is a negative integer.

i
\ If n is a positive integer, then g

d |
___(x'n) s _nx*nfl \‘

dx
1

PROOF
d d
ki 1 _ 1 . n
_xdx() dx(x)_x"'O—l-nx""
(xn)2 x2n
_ n—1
= n);, == _nxn~1—2n = _nx-nfl Cj
X
EXAMPLE 9
_1 dy & el
(a) If)—x,then dx-dx(x )= —x"*= 7
d[6 d 18
by ) =6—=@)=6(-3)""=——= E
”m(ﬁ) 6-(7) = 6(-3) -

So far we know that the Power Rule holds if the exponent 7 is a positive or negative
integer. If n = 0, then x° = 1, which we know has a derivative of 0. Thus the Power Rule
holds for any integer n. What if the exponent is a fraction? In Example 3 in Section 3.2 we
found that

which can be written as

This shows that the Power Rule is true even when n = 3. In fact, it also holds for any re
number n, as we will prove in Chapter 7. (A proof for rational values of n is indicated :
Exercise 44 in Section 3.6.) In the meantime we state the general version and use it in tl
examples and exercises.

THE POWER RULE (GENERAL VERSION) If nis any real number, then

d
Tn (x") = nx""'




6 11, a and b are constants. It is
. mathematics to use letters near the
f the alphabet to represent constants

the end of the alphabet to repre-
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EXAMPLE 10
(@) If f(x) = x7, then f'(x) = mx™ .

1
(b) Let )= \3/x_2
Then Z—y = di (7P = 2y @
X X
= —2x75 O

EXAMPLE 11 Differentiate the function f(f) = v/t (a + b?).
SOLUTION | Using the Product Rule, we have

Fii) = \/t_ %(a + bt) + (a + bt)%(\/t_)

=t b+ (a+bt)- 517"

a+ bt a + 3bt

BEA G W W

SOLUTION 2 If we first use the laws of exponents to rewrite f(z), then we can proceed
directly without using the Product Rule.

f) = a\/t + bt/t = at'? + bt¥?
() = 3at™* + 3bt'?
which is equivalent to the answer given in Solution 1. O
The differentiation rules enable us to find tangent lines without having to resort to the
definition of a derivative. They also enable us to find normal lines. The normal line to a
curve C at point P is the line through P that is perpendicular to the tangent line at P. (In

the study of optics, one needs to consider the angle between a light ray and the normal line
to a lens.)

EXAMPLE 12 Find equations of the tangent line and normal line to the curve
y = +x /(1 + x?) at the point (1, }).
SOLUTION According to the Quotient Rule, we have

(1 +37) () = V(4 )

dy _
dx (1 + x?)?
o +x2>2—lf; _ r2x)
N (1 + x?)?
(1 +x%) — 4x? 1 — 3x?

25+ 2P 2/ (1 + 2P
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So the slope of the tangent line at (l, %) is

l __1-3-1 _ 1
4 , x| 2J/11+ 1P 4
' /normal
14 We use the point-slope form to write an equation of the tangent line at (1, ;)
—|_tangent ’// ‘
’ y—3=-3ix-1) o y=-ix+3

| / The slope of the normal line at (1, 1) is the negative reciprocal of —3, namely 4, so an
| 0 / > X equation is
| y—3=4(x-1 o y=4x—;
: FIGURE 5 The curve and its tangent and normal lines are graphed in Figure 5. C
i

! EXAMPLE 13 At what points on the hyperbola xy = 12 is the tangent line parallel to the
| line 3x + y = 0?

SOLUTION Since xy = 12 can be written as y = 12/x, we have

dy d , _ ) 12
DLy =12-x)=-=%
dx dx &) =) x>

Let the x-coordinate of one of the points in question be a. Then the slope of the tangent
line at that point is —12/a”. This tangent line will be parallel to the line 3x + y = 0, or

0 AN 7 y = —3x, if it has the same slope, that is, —3. Equating slopes, we get
\
12 )
\ -—=-3 or a*=+4 or a= *2
\ a
3x+y=0
Therefore the required points are (2, 6) and (—2, —6). The hyperbola and the tangents
FIGURE 6 are shown in Figure 6. C

We summarize the differentiation formulas we have learned so far as follows.

[
, TABLE OF ; d B L. I
: DIFFERENTIATION FORMULAS | 2 a=0 e B =0
] (cf) =cf’ (f+g) =f*4¢ (f-9' =f—4g
‘ e f\ _af —fd
(f9) =fg' +4of (- = 5
g g
_| 3.3 | EXERCISES
1-20 Differentiate the function. 7. f() =30t + 8) 8. f(f)=31°— 3t +1
I. f(x)=186.5 2 f(x) = V30 9. V() = tar® 10. R(H) = 5t
3. f(t)=2 -3t 4. F(x) = ix*
x 3 4 - \/m
5. f(x) =x>—4x+ 6 6. h(x) = (x — 2)2x + 3) 1. Yt) =677 12. R(x) = —

X




14, () = Vi - %
16. B(y) =cy™®

47’ 18. g(u) = v2u + 3u

20. v = <\/§ + %)2

Jr + 48

Find the derivative of y = (x* + 1)(x” + 1) in two ways: by
ing the Product Rule and by performing the multiplication
first. Do your answers agree?

. Find the derivative of the function

B sV jxf*/;

-in two ways: by using the Quotient Rule and by simplifying
 first. Show that your answers are equivalent. Which method
~ do you prefer?

42 Differentiate.
V) = (257 + 3)(x* — 2%)

Y = (u + u )W - 2ud)

o S 3
—<yz y4>(y+5y)

_3x—1 2t
e 28.f(1?)=4+t2
x’ 30 - x+1
b x’ YT P tx-2
o] EY) :
v AR
t4 {80y 3[’2 +1 34. g(t) = t1/3
=ax’ +bx+c 36.y=A+£+—(—:2—
X x
r 38 e cx
L+ Jr : YT T+ ex
39 vy = /(2 - u—2u+5
y \/;(l+t+tl) 40. y = —
5 X +b
: 4. f(0) ==
r+i cx +d
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43. The general polynomial of degree n has the form
P(x) = apx" + apyx" '+ -+ asx? + aix + ao
where a, # 0. Find the derivative of P.
44-46 Find f'(x). Compare the graphs of f and f’ and use them
to explain why your answer is reasonable.
4. f(x) =x/(x* = 1)

1
45, f(x) =3x®—-5x"+3 46. f(x) =x + —
x

47. (a) Use a graphing calculator or computer to graph the func-
tion f(x) = x* — 3x> — 6x* + 7x + 30 in the viewing
rectangle [—3, 5] by [—10, 50].

(b) Using the graph in part (a) to estimate slopes, make
a rough sketch, by hand, of the graph of f". (See
Example 1 in Section 3.2.)

(c) Calculate f'(x) and use this expression, with a graphing

device, to graph f’. Compare with your sketch in part (b).

A9 as.

(a) Use a graphing calculator or computer to graph the func-
tion g(x) = x*(x* + 1) in the viewing rectangle [—4, 4]
by [—1, 1.5].

(b) Using the graph in part (a) to estimate slopes, make a
rough sketch, by hand, of the graph of g'. (See Example 1
in Section 3.2.)

(c) Calculate g'(x) and use this expression, with a graphing
device, to graph g'. Compare with your sketch in part (b).

49-50 Find an equation of the tangent line to the curve at the
given point.

49. y = , (1,1 50. y=x*+2x>—1x (1,2)

x+ 1

51. (a) The curve y = 1/(1 + x?) is called a witch of Maria
Agnesi. Find an equation of the tangent line to this curve
at the point (—1, %)

E (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

(a) The curve y = x/(1 + x?) is called a serpentine.
Find an equation of the tangent line to this curve at the
point (3, 0.3).
e (b) Tllustrate part (a) by graphing the curve and the tangent
line on the same screen.

53-56 Find equations of the tangent line and normal line to the
curve at the given point.

Bly=x+vx, (1,2 54. y= (1 +2%7% (1,9)
+1
55-y=———3x s (152) 56. y = ‘/;, (4,0.4)

x4+
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57-60 Find the first and second derivatives of the function.
57. f(x) = x* — 3x> + 16x @G(r)=\/;+{/r_

-2

59. f(x) = D 60. f(x) = rp—e

[61.] The equation of motion of a particle is s = t* — 3t, where s
is in meters and ¢ is in seconds. Find
(a) the velocity and acceleration as functions of ¢,
(b) the acceleration after 2 s, and
(c) the acceleration when the velocity is 0.

62. The equation of motion of a particle is
s =2t — 71> + 4t + 1, where s is in meters and  is in
seconds.
(a) Find the velocity and acceleration as functions of z.
(b) Find the acceleration after 1 s.
(c) Graph the position, velocity, and acceleration functions
on the same screen.

[63. Suppose that f(5) = 1, f'(5) = 6, ¢(5) = —3, and g'(5) = 2.

Find the following values.
(@) (f9'5)
© (g/1)'®)

®) (f/9)'5)

64. Find h'(2), given that f(2) = —3,9(2) = 4,f'(2) = -2,
and g'(2) = 7.

(a) h(x) = 5f(x) — 49(x) (b) h(x) = f(x)g(x)
_fw _ 96

(c) h(x) = e d) h(x) =771 0

65. If f(x) = /x g(x), where g(4) = 8 and g'(4) = 7, find f'(4).

66. If h(2) = 4 and h'(2) = —3, find

d h(x)
dx X
67. If f and g are the functions whose graphs are shown, let

u(x) = f(x)g(x) and v(x) = £(x)/g(x).
(a) Find u'(1). (b) Find v'(5).

x=2

68. Let P(x) = F(x)G(x) and Q(x) = F! (x)/G(x), where F and G
are the functions whose graphs are shown.
(a) Find P'(2). (b) Find Q'(7).

69. If g is a differentiable function, find an expression for the
derivative of each of the following functions.
x g9(x)

® y=—=x

(@) y = xg(x) e

If f is a differentiable function, find an expression for the
derivative of each of the following functions.

(@) y = xf(%) ) y= f)ff)
o 1+ xf(x)

(C)y=},a)— (d)y=T

[71] Find the points on the curve y = 2x° + 3x2— 12x + 1
where the tangent is horizontal.

72. For what values of x does the graph of
f(x) = x* + 3x? + x + 3 have a horizontal tangent?

73. Show that the curve y = 6x° + 5x — 3 has no tangent line
with slope 4.

74. Find an equation of the tangent line to the curve y = x\/;
that is parallel to the line y = 1 + 3x.

75. Find equations of both lines that are tangent to the curve
y =1+ x*and are parallel to the line 12x — y = 1

76. Find equations of the tangent lines to the curve

that are parallel to the line x — 2y = 2.

77. Find an equation of the normal line to the parabola
y = x* — 5x + 4 that is parallel to the line x — 3y = S,

78. Where does the normal line to the parabola y = x — x? at the
point (1, 0) intersect the parabola a second time? Illustrate
with a sketch.

[79.] Draw a diagram to show that there are two tangent lines to
the parabola y = x? that pass through the point (0, —4). Find
the coordinates of the points where these tangent lines inter-
sect the parabola.




d equatlons of both lines through the point (2, —3) that
ent to the parabola y = x2+ x
that there is no line through the point (2, 7) that is
at to the parabola. Then draw a diagram to see why.

the Product Rule twice to prove that if f, g, and h are
eatiable, then (fgh)' = fah + fo'h + fgh'.
ing f = g = h in part (a), show that

21 = WWPF )

jvatives and observing the pattern that occurs.
() flx)=1/x
isecond-degree polynomial P such that P(2) = 5,
3,and P"(2) = 2.

equation y” + y' — 2y = x?is called a differential
tion because it involves an unknown function y and its
ves y' and y". Find constants A, B, and C such that the
tion y = Ax”> + Bx + C satisfies this equation. (Differen-
| equations will be studied in detail in Chapter 10.)

d a cubic function y = ax® + bx? + cx + d whose graph
horizontal tangents at the points (—2, 6) and (2, 0).

d a parabola with equation y = ax® + bx + c that has

4atx =1, slope —8 at x = —1, and passes through the
n (2 15).

S exercise we estimate the rate at which the total personal
ome is rising in the Richmond-Petersburg, Virginia, metro-
tan area. In 1999, the population of this area was 961,400,
the population was increasing at roughly 9200 people per
Ir. The average annual income was $30,593 per capita, and
"aVCrage was increasing at about $1400 per year (a little
Ve the national average of about $1225 yearly). Use the
duct Rule and these figures to estimate the rate at which
personal income was rising in the Richmond-Petersburg
ain 1999. Explain the meaning of each term in the Product

nufacturer produces bolts of a fabric with a fixed width.
uantlty g of this fabric (measured in yards) that is sold is
ion of the selling price p (in dollars per yard), so we can

4 = f(p). Then the total revenue earned with selling price

R(p) = pf(p).

t does it mean to say that f(20) =
F20) = —3509

Assummg the values in part (a), find R'(20) and interpret
Ur answer,

10,000 and

ol { —x ifx<1

2 —-2x+2 ifx>1

differentiable at 12 Sketch the graphs of f and f".

92.

. (a) For what values of x is the function f(x) =
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. At what numbers is the following function g differentiable?

=1=2x if x< =1
glx) = { x? if —-1sx<1
X if x>1

Give a formula for g’ and sketch the graphs of g and g'.

|x* — 9| differ-
entiable? Find a formula for f".
(b) Sketch the graphs of f and f".

Where is the function A(x) = |x — 1| + |x + 2| differenti-
able? Give a formula for 4’ and sketch the graphs of 4 and A’.

For what values of a and b is the line 2x + y = b tangent to

94.

the parabola y = ax* when x = 2?

(a) If F(x) = f(x)g(x), where f and g have derivatives of all
orders, show that F" = f"g + 2f'q" + fg".

(b) Find similar formulas for F” and F®.

(c) Guess a formula for F®.

. Find the value of ¢ such that the line y = 3x + 6 is tangent to

the curve y = cv/x.

. Let

mx+b if x>2

g {2 if x<2

Find the values of m and b that make f differentiable
everywhere.

. An easy proof of the Quotient Rule can be given if we make

the prior assumption that F'(x) exists, where F = f/g. Write
f = Fg; then differentiate using the Product Rule and solve the
resulting equation for F".

. A tangent line is drawn to the hyperbola xy = ¢ at a point P.

(a) Show that the midpoint of the line segment cut from this
tangent line by the coordinate axes is P.

(b) Show that the triangle formed by the tangent line and the
coordinate axes always has the same area, no matter where
P is located on the hyperbola.

1000_1

X
Evaluate lim —————
L

100. Draw a diagram showing two perpendicular lines that intersect

on the y-axis and are both tangent to the parabola y = x°.
Where do these lines intersect?

. If ¢ > 3, how many lines through the point (0, ¢) are normal

lines to the parabola y = x2? What if ¢ < 3?

. Sketch the parabolas y = x> and y = x> — 2x + 2. Do you

think there is a line that is tangent to both curves? If so, find its
equation. If not, why not?
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APPLIED
PROJECT

BUILDING A BETTER ROLLER COASTER

Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying
photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the

slope of the drop —1.6. You decide to connect these two straight stretches y = Ly(x) and

y = L,(x) with part of a parabola y = f (x) = ax® + bx + c, where x and f(x) are measured
in feet. For the track to be smooth there can’t be abrupt changes in direction, so you want the
linear segments L; and L, to be tangent to the parabola at the transition points P and Q. (See |
figure.) To simplify the equations, you decide to place the origin at P.

1. (a) Suppose the horizontal distance between P and Q is 100 ft. Write equations in a, b, anc
that will ensure that the track is smooth at the transition points.
(b) Solve the equations in part (a) for a, b, and ¢ to find a formula for f(x).
(c) Plot Ly, f, and L, to verify graphically that the transitions are smooth.
(d) Find the difference in elevation between P and Q.

2. The solution in Problem 1 might look smooth, but it might not feel smooth because the pie«

wise defined function [consisting of L;(x) for x < 0, f(x) for 0 < x < 100, and Lo(x) for
x > 100] doesn’t have a continuous second derivative. So you decide to improve the desigr
using a quadratic function g(x) = ax® + bx + c only on the interval 10 < x < 90 and con
necting it to the linear functions by means of two cubic functions:

gx) =kx* + Ix* + mx+n 0sx<10

hx)=px* +gx*+rx+s 90 <x= 100

(a) Write a system of equations in 11 unknowns that ensure that the functions and their fir
two derivatives agree at the transition points.

(@S] (b) Solve the equations in part (a) with a computer algebra system to find formulas for
q(x), g(x), and h(x).
(¢) Plot Ly, g, g, h, and L, and compare with the plot in Problem 1(c).
3.4 | DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

A review of the trigonometric functions is
given in Appendix D.

Before starting this section, you might need to review the trigonometric functions. ]
ticular, it is important to remember that when we talk about the function f defined

real numbers x by

f(x) = sinx

it is understood that sin x means the sine of the angle whose radian measure is x. A
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot.
from Section 2.5 that all of the trigonometric functions are continuous at every nui
their domains.

If we sketch the graph of the function f(x) = sin x and use the interpretation o
as the slope of the tangent to the sine curve in order to sketch the graph of f’ (see
cise 14 in Section 3.2), then it looks as if the graph of f' may be the same as the
curve (see Figure 1).




Visual 3.4 shows an animation

FIGURE 1|

- We have used the addition formula for sine.
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e

N

Let’s try to confirm our guess that if f(x) = sin x, then f'(x) = cos x. From the defini-
tion of a derivative, we have

£ = lim L&D —F@ _ o sinGx + h) = sinx

h—0 h h—0 h

sin x cos & + cos x sin & — sin x

= Iim h

. sin x cos & — sin x cos x sin A
= lim +
h—0 h h

-l h

. .. COSh—1 . . sinh
1] = lim sin x * lim ———— + lim cos x - lim
h—0 h—0 h h—0 h—0 R

Two of these four limits are easy to evaluate. Since we regard x as a constant when com-
puting a limit as 7 — 0, we have

lim sin x = sin x and lim cos x = cos x
h—0 h—0

The limit of (sin &)/A is not so obvious. In Example 3 in Section 2.2 we made the guess,
on the basis of numerical and graphical evidence, that

We now use a geometric argument to prove Equation 2. Assume first that 0 lies between
0 and /2. Figure 2(a) shows a sector of a circle with center O, central angle 6, and
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FIGURE 2

We multiply numerator and denominator by

cos 0 + 1 in order to put the function in a form

in which we can use the limits we know.

radius 1. BC is drawn perpendicular to OA. By the definition of radian measure, we haye
arc AB = 6. Also | BC| = | OB|sin 6 = sin 6. From the diagram we see that

|BC| < |AB| < arc AB

sin 6
0

<1

Therefore sin @ < 6 SO

Let the tangent lines at A and B intersect at E. You can see from Figure 2(b) that the:
circumference of a circle is smaller than the length of a circumscribed polygon, and sg

arc AB < |AE| + |EB/|. Thus
9 = arc AB < |AE| + |EB|
< |AE| + |ED|
= |AD| =|OA| tan 6
= tan 6

m the definition of the length

(In Appendix F the inequality 6 < tan 6 is proved directly fro
ere.) Therefore we have

of an arc without resorting to geometric intuition as we did h

sin 6

cos 6

sm0<1

SO cos 0 <

We know that limg_o 1 = 1 and limg—o COS § = 1, so by the Squeeze Theorem, we have

. sin6
lim =1
-0t 0

But the function (sin 6)/6 is an even function, so its right and left limits must be equal.

Hence we have

sin 6
inf _,

lim
6—0

so we have proved Equation 2.
We can deduce the value of the remaining limit in (1) as follows:

cos 6 — 1 . cosf—1 cosf+1 ) cos?f — 1
if————=tml— "7 7 = lim—————
§—0 0 6—0 0 cos 6 + 1 9—0 @(cos 6 + 1)
_ —sin*6 . ([sin6 sin 0 ,
=lm————=-lim\— " —— 7 3
9—0 O (cos 6 + 1) 0\ @ cosf+ 1 ;
. sin@ . sin 6 3
= —lim —— * lim 4

6—0 0 6—0 cos 6 + 1

0
—1-<1+1>=0 (by Equation 2)




3 shows the graphs of the function of
1 and its derivative. Notice that y’ = 0
er y has a horizontal tangent.
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cos B — 1
[3] lim—=

6—0

0

If we now put the limits (2) and (3) in (1), we get

N . cosh—1 ) . sinh
f'(x) = lim sin x * lim ———— + lim cos x * lim
h—0 h—0 h h—0 h—0 h

= (sinx) + 0 + (cosx) - 1 = cos x

So we have proved the formula for the derivative of the sine function:

d
. (sin x) = cos x

X

I7 EXAMPLE | Differentiate y = x”sin x.
SOLUTION Using the Product Rule and Formula 4, we have

d d d
ﬁ = ng (sin x) + sin X (x?)

= x2cos x + 2xsin x O

Using the same methods as in the proof of Formula 4, one can prove (see Exercise 20)
that

d
(5] Tx (cos x) = —sin x
X

The tangent function can also be differentiated by using the definition of a derivative,
but it is easier to use the Quotient Rule together with Formulas 4 and 5:
d [ sinx

dx i dx \ cos x

0s —d—(sin ) — si i(c )
cos X —— x) = sinx——(cos x

cos’x

cos x * cos x — sin x (—sin x)

cos’x
cos?x + sin’c

cos’x

= — = sec’x
cos’x
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« When you memorize this table, it is helpful
to notice that the minus signs go with the der-
ivatives of the “cofunctions,” that is, cosine,
cosecant, and cotangent.

FIGURE 4
The horizontal tangents in Example 2

P
.
G, 0
L’Tr;
e 4
S
FIGURE 5

I
| |

d
(6] ! — (tan x) = sec’x
dx l
The derivatives of the remaining trigonometric functions, csc, sec, and cot, can al.
found easily using the Quotient Rule (see Exercises 17-19). We collect all the differe

tion formulas for trigonometric functions in the following table. Remember that the
valid only when x is measured in radians.

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

d . d
— (sin x) = cos x — (csc x) = —csc x cot x
dx dx
d ) d
— (cos x) = —sin x — (sec x) = sec x tan x
dx dx
d 2 2
— (tan x) = sec’x — (cot x) = —cscx
| dx dx
!
sec X
EXAMPLE 2 Differentiate f(x) = 1—+_¥A—n— For what values of x does the graph of
an x

have a horizontal tangent?

s0LUTION The Quotient Rule gives

d d
(1 + tan x) — (sec x) — sec x— (1 + tanx)
dx dx

f'x) =

(1 + tan x)?

(1 + tan x) sec x tan x — sec x * sec’x
(1 + tan x)°

sec x (tan x + tan®x — sec’x) _ sec x (tan x — 1)
(1 + tan x)° (1 + tan x)

In simplifying the answer we have used the identity tan’x + 1 = sec’x.
Since sec x is never 0, we see that f'(x) = 0 when tan x = 1, and this occurs W]
x = nm + /4, where n is an integer (see Figure 4).

Trigonometric functions are often used in modeling real-world phenomena. In [
lar, vibrations, waves, elastic motions, and other quantities that vary in a periodic 1
can be described using trigonometric functions. In the following example we disc
instance of simple harmonic motion.

I7 EXAMPLE 3 An object at the end of a vertical spring is stretched 4 cm beyond i
position and released at time ¢ = 0. (See Figure 5 and note that the downward dire
is positive.) Its position at time ¢ is

s =f(f) =4cost

Find the velocity and acceleration at time ¢ and use them to analyze the motion of
object.




= Look for a pattern.

Note that sin 7x # 7 sin x.

:
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SOLUTION The velocity and acceleration are

d d d
v=i=z(4cost)=4-d—t(cost)=—4sint

d d d
a=71;=7d—t(—4sint) = —4Z(sint) = —4cost

The object oscillates from the lowest point (s = 4 cm) to the highest point
(s = —4 cm). The period of the oscillation is 277, the period of cos ¢.
The speed is | »] = 4|sin ¢|, which is greatest when |sin t| = 1, that is, when
cos t = 0. So the object moves fastest as it passes through its equilibrium position
(s = 0). Its speed’is-0 when sin # = 0, that is, at the high and low points.
The acceleration a = —4cost =0 when s = 0. It has greatest magnitude at the high
and low poinfs. See the graphs in Figure 6. =]

EXAMPLE 4 Find the 27th derivative of cos x.
SOLUTION The first few derivatives of f(x) = cos x are as follows:
f'(x) = —sinx
f"(x) = —cosx
f"(x) = sinx
f®(x) = cos x

fO(x) = —sinx

We see that the successive derivatives occur in a cycle of length 4 and, in particular,
f®(x) = cos x whenever n is a multiple of 4. Therefore

f@®(x) = cos x
and, differentiating three more times, we have

f@(x) = sinx m|

Our main use for the limit in Equation 2 has been to prove the differentiation formula
for the sine function. But this limit is also useful in finding certain other trigonometric lim-
its, as the following two examples show.

sin 7x
EXAMPLE 5 Find lim .
x—0 4x

SOLUTION In order to apply Equation 2, we first rewrite the function by multiplying and

dividing by 7:
sin7x _ T sin 7x
4x 4 Tx

If we let § = 7x, then § — 0 as x — 0, so by Equation 2 we have
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17 EXAMPLE 6 Calculate lirr(l) x cot x.

SOLUTION Here we divide numerator and denominator by x:

EXERCISES

1-16 Differentiate.

1. f(x) = 3x* — 2cosx 2. f(x) =

3.f(x)=sinx+%cotx 4. y=2cscx+SCosx
5. g() =1’ cost 6. g(f) = 4sect +tant
7. h(f) = Ocsc 6 — cot 0 8. y=ulacosu + b cot u)
x 1+ sinx
- 0. y=——-
@y 2 —tanXx YT x4 cosx
sec 0 ] —secx
n.fO)=—"__., 12. y=—1T___
f( ) 1+ sec 0 y tan x
sin X
13. y= " 14. y=csc9(6+cot0)
I5. y=se001an0 16. y=xzsinxtanx
d
17. Prove that I (csc x) = —CsC X cot x.
b

d
18. Prove that _c_i; (sec x) = sec x tan X.

d 2
19. Prove that o (cot x) = —cscx.

then f'(x) = —sin x.

lim x cot x = lim
x

x—0

\/;sinx

21-24 Find an equation of the tangent line to the curve at the

given point.

21. y = secx, (7/3,2)

23. y = x + COS X, 0,1)

8 y=—

sin x + COS X

22 y=0+ X) COS X, 0,1)

1

25. (a) Find an equation of the tangent line to the curve

y = 2xsinxat the point (7/2, .
(b) Tllustrate part (a) by graphing the curve
line on the same screen.

and the tangent

20. Prove, using the definition of derivative, that if f(x) = cos X,

©,1)

e

xcos x .. COSX ll_r,% g
—=lm— = :
—0 sin x x—0 sin X . sinx
== him
X x—0 X
cos 0

= (by the continuity of cosine and Equation 2)

26. (a) Find an equation of the tangent line to the curve
y =secx — 2008 X at the point (77/3, 1). 4
A9  (b) Nlustrate part (a) by graphing the curve and the tangent
line on the same screen. E

27. (a) If f(x) = secx — X find f'(x).
(b) Check to see that your answer to part (a) is reasonable by
graphing both f and f' for |x| < a/2.

28. (a) If f(x) = Yxsin x, find £(x).
A4 (b) Checktosee that your answer to part (a) is reasonable b
graphing both fand f' for0<x <2m

1f H(9) = 6 sin 6, find H'(6) and H"(6).
30. If f(x) = sec X, find f"(m/4).

31. (a) Use the Quotient Rule to differentiate the function

a3

tanx — 1

fx) =

sec x
(b) Simplify the expression for f(x) by writing it in terms of =
sin x and cos x, and then find f'(x).

(c) Show that your answers to parts (a) and (b) are
equivalent.

32. Suppose f(7/3) = 4and f'(m/3) =2 and let
g(x) = f(x) sinx

COS X

h) =56y

and

Find (a) g'(7/3) and (b) K’ (7/3)- :
[33.] For what values of x does the graph of f(x)=x* 2 sin X 3

have a horizontal tangent? -
34. Find the points on the curve y = (cos x)/(2 + sin x) at whiCt

the tangent is horizontal. i

35. Amassona spring vibrates horizontally on a smooth
level surface (see the figure). Its equation of motion is
x(t)=18 sin ¢, where t is in seconds and x in centimeters.
(a) Find the velocity and acceleration at time t.




(b) Find the position, velocity, and acceleration of the mass
st time ¢ = 27/3. In what direction is it moving at that

time?

equilibrium position

Y ‘z%%f%f%ﬁ

:
0 X X

An elastic band is hung on a hook and a mass is hung on the
lower end of the band. When the mass is pulled downward
and then released, it vibrates vertically. The equation of
motion is s = 2 cos t + 3 sint, t = 0, where s is measured
in centimeters and ¢ in seconds. (Take the positive direction to
be downward.)
(a) Find the velocity and acceleration at time .
(b) Graph the velocity and acceleration functions.
(c) When does the mass pass through the equilibrium
position for the first time?

. (d) How far from its equilibrium position does the mass travel?

(e) When is the speed the greatest?

7. A ladder 10 ft long rests against a vertical wall. Let 6 be the
angle between the top of the ladder and the wall and let x be
the distance from the bottom of the ladder to the wall. If the
bottom of the ladder slides away from the wall, how fast does
x change with respect to § when 6 = 7/3?

An object with weight W is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the
rope makes an angle 6 with the plane, then the magnitude of
the force is
_ W
Jsin @ + cos 6

where u is a constant called the coefficient of friction.

(a) Find the rate of change of F with respect to 6.

(b) When is this rate of change equal to 0?

(©) If W= 501b and = 0.6, draw the graph of F as a func-
tion of @ and use it to locate the value of @ for which

dF/df = 0. Is the value consistent with your answer to
part (b)?

=48 Find the limit.

40. lim —
x—0 sin 6x

THE CHAIN RULE
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tan 6¢ . cosf—1

lim . lim

=0 sin 2¢ 6—0  sinf

. sin(cos 6) . sin®3t

43. lim—— . lim——
6—0 sec 6 =0 ¢t

sin 6 sin(x?
Ty  fim S0

4—0 6 + tan 6 =0 X

. 1 — tanx . sin(x — 1)
47. lim —— . lim ————

x—m/4 Sin X — COS X =l x4+ x—2

. Differentiate each trigonometric identity to obtain a new
(or familiar) identity.

sin x

(a) tan x = (b) sec x =

cos x cos X
1 + cotx
GSCix

(c) sinx + cos x =

. A semicircle with diameter PQ sits on an isosceles triangle
POR to form a region shaped like a two-dimensional ice-
cream cone, as shown in the figure. If A(0) is the area of the
semicircle and B(0) is the area of the triangle, find

- A(6)

1
6—0% B(g)

)
R

[51.] The figure shows a circular arc of length s and a chord of
length d, both subtended by a central angle 6. Find

. S
lim —
6—0t d

d s

o

Suppose you are asked to differentiate the function

The differentiation formulas you learned in the previous sections of this chapter do not

F(x) = /x> + 1

enable you to calculate F'(x).
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See Section 1.3 for a review of
composite functions.

Observe that F is a composite function. In fact, if we let y=fu) =i
u = g(x) = x* + 1, then we can write y = F(x) = f(g(x)), that is, F =fog."
how to differentiate both f and g, so it would be useful to have a rule that tells t
find the derivative of F = f° g in terms of the derivatives of f and g.

It turns out that the derivative of the composite function f o g is the product of t
atives of f and g. This fact is one of the most important of the differentiation rul
called the Chain Rule. It seems plausible if we interpret derivatives as rates of
Regard du/dx as the rate of change of u with respect to x, dy/du as the rate of c
y with respect to u, and dy/dx as the rate of change of y with respect to x. If u
twice as fast as x and y changes three times as fast as u, then it seems reasonat
changes six times as fast as x, and so we expect that

dy _dydu
dx du dx

THE CHAIN RULE If g is differentiable at x and f is differentiable at g(x), then
composite function F = fo g defined by F(x) = f(g(x)) is differentiable at x a
F'is given by the product

F'(x) = f'(g(x)) - ¢'(x)
In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions,

dy _dydu
dx du dx

COMMENTS ON THE PROOF OF THE CHAIN RULE Let Au be the change in u corresponding
change of Ax in x, that is,

Au = g(x + Ax) — g(x)
Then the corresponding change in y is

Ay = f(u + Au) = f(u)

It is tempting to write

dy . Ay

= i e

dx Ax—0 Ax
Ay Au
M = i . i s
D A,XI'TO Au Ax

im
Ax—0 Au  Aax—0 Ax

= lim ﬂ . lim ﬂ (Note that Au — 0 as Ax — 0
bu—0 Au  Ax—0 Ax since g is continuous.)

_dy du
du dx

The only flaw in this reasoning is that in (1) it might happen that Au = 0 (even wt
Ax # 0) and, of course, we can’t divide by 0. Nonetheless, this reasoning does at |
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suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of
this section. O

|

|

The Chain Rule can be written either in the prime notation 1
(fo9)(x) = f'(g(x) - g'(x) |
or, if y = f(u) and u = g(x), in Leibniz notation:

dy dy du
B dx  du dx

Equation 3 is easy to remember because if dy/du and du /dx were quotients, then we could
cancel du. Remember, however, that du has not been defined and du/dx should not be
thought of as an actual quotient.

EXAMPLE | Find F'(x) if F(x) = +/x* + 1.

SOLUTION | (using Equation 2): At the beginning of this section we expressed F as
F(x) = (f° g)(x) = f(g(x)) where f(u) = Vu and g(x) = x*> + 1. Since

1
f’(u) = %u—l/z — 2\/_ and g:(x) = D
u

we have F'(x) = f'(g(x)) - g'(x)

1 5
—2\/x2+1.2x—«/x2+1

SOLUTION 2 (using Equation 3): If weletu = x> + landy = Ju, then

Pl =22
Y7 dx 2u

(2x) |

O

- ) =
NSNS

When using Formula 3 we should bear in mind that dy/dx refers to the derivative of y
when y is considered as a function of x (called the derivative of y with respect to x), where-
as dy/du refers to the derivative of y when considered as a function of u (the derivative of
y with respect to u). For instance, in Example 1, y can be considered as a function of x !

(y = x2+ 1) and also as a function of u (y = \/;) Note that !

dy X d 1

; B oy Y ey i
b , Ir F'(x) om] whereas » f'(w) N .{~

NOTE | In using the Chain Rule we work from the outside to the inside. Formula 2 says
that we differentiate the outer function f [at the inner function g(x)] and then we multiply

by the derivative of the inner function. ]
d , , |

e S ) B A CC B ]

e S e i

outer evaluated derivative evaluated derivative T

function at inner of outer at inner of inner %{

function function ‘function function
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= See Reference Page 2 or Appendix D.

7 EXAMPLE 2 Differentiate (a) y = sin(x?) and (b) y = sin’x.

SOLUTION
(a) If y = sin(x?), then the outer function is the sine function and the inner function is
the squaring function, so the Chain Rule gives

_d_y_ = _d_ : 2 — 2
= sin x*) = cos: (x*) - 2x
dx dx
e — | S | ] { O N '
outer evaluated derivative evaluated derivative E
function at inner of outer at inner of inner E
function function function function 3
= 2x cos(x?)

(b) Note that sin’x = (sin x). Here the outer function is the squaring function and the
inner function is the sine function. So

dy d . 5 B .

— = — (sin x) - 2 - (sinx) + cosx

dx dx
[ S ] [ | G
derivative evaluated derivative
of outer at inner of inner
function function function

known as the double-angle formula). a

In Example 2(a) we combined the Chain Rule with the rule for differentiating the sing
function. In general, if y = sin u, where u is a differentiable function of x, then, by th
Chain Rule,

dy dy du ” du
bt AR (S AP, hild
dx du dx " dx
d d
Thus T (sin u) = cos u d—’;

In a similar fashion, all of the formulas for differentiating trigonometric functions calf
be combined with the Chain Rule. )

Let’s make explicit the special case of the Chain Rule where the outer function f is@
power function. If y = [g(x)]", then we can write y = f(u) = u" where u = g(x). By usi
the Chain Rule and then the Power Rule, we get

qy 23 @

du
= = | e S, H
dx du dx L= n[g(x)]""'g'(x)

THE POWER RULE COMBINED WITH THE CHAIN RULE If n is any real number i
and u = g(x) is differentiable, then 1

d ny — n—1 du y‘
I (u") = nu Ix I
. d n n—1 !
Alternatively, Ix [g(x)]" = n[g(0)]"" - g (x)

Notice that the derivative in Example 1 could be calculated by taking n = ! in Rule
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EXAMPLE 3 Differentiate y = (x* — 1)'®.
SOLUTION Taking u = g(x) = x> — 1 and n = 100 in (4), we have
dy _d
dx dx
= 100(x® = 1)* « 3x = 300x%(x* — 1)*

d
(x* — 1) = 100(x* — 1)*— x*-1)
dx

1
EXAMPLE 4 Find f'(x) if f(x) = e

SOLUTION First rewrite f: fO=+x+1)"

Thus fl)=—3(x*+x+ 1)_“/3-‘;i x*+x+1)
X

—1xP+x+ 1)2x + 1)

EXAMPLE 5 Find the derivative of the function

9) = <2tt—+21 >

S0LUTION Combining the Power Rule, Chain Rule, and Quotient Rule, we get

, t—=2\0d [t—2
g(t)*9<2t+1) dt<2t+1>

=2\ @+1)1-20¢—-2) 450 — 2)®
=2 2 = 10 O
2t + 1 @2t+1) 2t +1)
8 of the functions y and y" in EXAMPLE 6 Differentiate y = (2x + 1)°(x® — x + 1)%.

16 are shown in Figure 1. Notice that
‘_;‘wheny increases rapidly and y’ = 0
L,h:horizontal tangent. So our answer
3 be reasonable. d d d

3 —y—=(2x+1)5—-()c3-—x+1)4-1-()c3—x-+-1)4—(2)64-1)5
: dx dx dx

SOLUTION In this example we must use the Product Rule before using the Chain Rule:

d
=@2x+ 14> -x+1P—E —x+1)
dx

d .
+(x3—x+1)4-5(2x+1)4z(2x+1)

=402x + 1)’ —x + 1PGx2— 1) + 5(x* —x + D*Q2x + 1)* - 2

Noticing that each term has the common factor 2(2x + D*(x* — x + 1)?, we could
factor it out and write the answer as

Z—y =2(2x + 1)*(x* — x + 1)*(17x* + 6x> — 9x + 3) O
x
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The reason for the name “Chain Rule” becomes clear when we make a longer chain by
adding another link. Suppose that y = f(u), u = g(x), and x = h(z), where f, g, and h are °
differentiable functions. Then, to compute the derivative of y with respect to 7, we use th
Chain Rule twice:

dy _dy dx _dy duds
dt dx dt du dx‘'dt

7 EXAMPLE 7 If f(x) = sin(cos(tan x)), then

f'lx) = cos(cos(tan x)) 2 cos(tan x)
dx

d
= cos(cos(tan x)) [—sin(tan x)] o (tan x)
— —cos(cos(tan x)) sin(tan x) sec’x
Notice that we used the Chain Rule twice. o

EXAMPLE 8 Differentiate y = JJsec x3.

SOLUTION Here the outer function is the square root function, the middle function is the
secant function, and the inner function is the cubing function. So we have

d 1 d
8 e — (seC %?)
dx 2./secx?® dx

d
_— — secx*tanx®—(x?)
2./sec x3 dx

3x? sec x> tan x°
_ SxTsecx @R~

- 2./sec x*

HOW TO PROVE THE CHAIN RULE :
Recall that if y = f(x) and x changes from a to a + Ax, we defined the increment of y as

Ay = f(a + Ax) — f(@)

According to the definition of a derivative, we have

lim ﬂ = f'(a)

Ax—0 AX

So if we denote by & the difference between the difference quotient and the derivatiV

we obtain
(DY ) =fa) - fle) =
Jim & = }}5130< % f (a)> = f'(a) — f'@ =0
Ay . )
But 8=—~x—f(a) = Ay=f(a)Ax+8Ax
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If we define & to be 0 when Ax = 0, then & becomes a continuous function of Ax. Thus,
for a differentiable function f, we can write

5] Ay = f'(a) Ax + € Ax where ¢ —>0 as Ax—0

and & is a continuous function of Ax. This property of differentiable functions is what
enables us to prove the Chain Rule.

PROOF OF THE CHAIN RULE Suppose u = g(x) is differentiable at a and y = f(u) is differen-
tiable at b = g(a). If Ax is an increment in x and Au and Ay are the corresponding incre-
ments in « and y, then we can use Equation 5 to write

(6] Au=g'(@) Ax + g1 Ax = [g'(a) + &1] Ax
where &, — 0 as Ax — 0. Similarly
Ay=f’(b)Au+szAu=[f’(b)+82]Au

where g, — 0 as Au — 0. If we now substitute the expression for Au from Equation 6

into Equation 7, we get
Ay =[f'(b) + ellg'a) + 1] Ax

- & _[7(0) + elg@ + o

As Ax — 0, Equation 6 shows that Au — 0. So both &, — 0 and &, —> 0 as Ax— 0.

Therefore

L lim 5 lim [£'(b) + &21lg'(@) + &1

dx Ax—0 Ax Ax—0
= f'(b)g'(a) = f'(g(a))g'(a)

This proves the Chain Rule.

the composite function in the form f(g(x)). [Identify the
on & = g(x) and the outer function y = f(u).] Then find

e a1
2oy = m
1)° 4. y = tan(sin x)

6. y =sin \/;

id the derivative of the function.
xt + 302 — )8 8. F(x) = (4x — x*)'®
e
L+ 2x + x3 10. f(x) =1+ x4
1
{7 12, f(f) = YT+ tant
14. y = a® + cos’x

bs(a’ + x°)

15. y = xsec kx

17. g(x) = (1 + 40°G + x = x°)°

18. h(t) = (' — 1)(£* + 1)*
y=(2x— 5)48x> — 5)7°

—— 2+1Y
¥ xt—1

23. y = sin(x cos X)

= ||
z 4+ 1

25. F(z) =

r
27 Y= \/;‘2—4}-—1

16. y = 3 cot(nb)

20. y=(x*+1) Yx2+2

22, y=x siny/x

24 ()——__x_’.
SO =TT

(y - 1*
26. G(y) =
ST
CcOSs TX
28, y=rm—
sin mx + cOS TX
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2 ¥\ 60. Find the x-coordinates of all points on the curve
29. y = sin(tan 2x) 30. G(y) = e y = sin2x — 2 sin x at which the tangent line is horizontal.
61 If F(x) = f(g(x)), where f(-2)=28 (-2 =410 =3
_ g — 2 ’ , s
3l. y = s 1+ x* 32. y tan (30) g(s) = =2, and g!(s) = 6, find F’(S)
1
33, y = sec’x + tan’x 34, y=xsin— 62. If h(x) = /& + 3f(x), where £(1)=7and f'(1) =4
* find A’ (1) '
1 — cos 2x ! t ' S ok
y=\— 36. f() =\l 72 63. A table of values for f, 9, f ,and g’ is given.
3. (1+cos2x) 0 N 2 +4
BT y= cot?(sin 6) 38, y=(ax + vx* F p2 )2
39. y=[x*+ Q= 3x)°)° 40. y = sin(sin(sin x))
4I.y=\/x+\/; 4z.y=\/x+,/x+\/§
43. = 1 + n)? 44. — Afcind
3. g(x) (2rsinrx n) y = €08 (sin’x) @ If he) =f(g(x)), find H(1).
45. y = cos /sin(tan 7x) 46 y=[x+(x+ sin’x)*]* (b) If H(x) = g(f(x)), find H'(1).
64. Let f and g be the functions in Exercise 63.
-~

(a) fF (x) =f(f (x)), find F '(2).

47-50 Find the first and second derivatives of the function. ,
(b) If G(x) = 9(9(¥). find G'(3)-

47. h(x) = /x* + 1 48. y = sin’ (7t
) ’ (mt) If f and g are the functions whose graphs are shown, let
49. H(r) = tan 3t 50. y = i u(x) = flg), v@) = 9 (x)), and w(x) = g(g(x)). Find
Jx+1 each derivative, if it exists. If it does not exist, explain why.

(a) u'(1) (b) v'(1) (c) w'(1)

51-54 Find an equation of the tangent line to the curve at the
given point.

51, y=(010+ 2%)°, (0,1) 52, y =sinx + sinzx, (0,0)
53. y = sin(sin x), (m0) 54, y=+5 % %2, (2,3)

5 g e e

55, (a) Find an equation of the tangent line to the curve
y = tan(7x%/4) at the point 1,1).
o (b) Tlustrate part (a) by graphing the curve and the tangent

Jine on the same screen. 66. 1f f is the function whose graph is shown, let h(x) = f(f ()

and g(x) = f (x?). Use the graph of f to estimate the value

56. (a) Thecurvey = |x|/V2 — 22 is called a bullet-nose Curve: of each derivative.
Find an equation of the tangent line t0 this curve at the (a) K (2) ®) ¢'(2)
point (1, 1).
A9 (b) Nustrate part (a) by graphing the curve and the tangent

line on the same screen.

57. (a) ff(x) = x+/2 — x2, find f'(x)-
@ (b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of fand f"

58. The function fx) = sin(x + sin 2x),0 <x=<m, arises in
applications to frequency modulation (FM) synthesis.
(a) Use a graph of f produced by a graphing device to make
a rough sketch of the graph of f"
(b) Calculate f '(x) and use this expression, with a graphing (b) G'(%).
device, to graph f'. Compare with your sketch in part (a).

Suppose f is differentiable on R. Let F(x) = f(cos x) 1
and G(x) = cos(f(x))- Find expressions for (a) F'(x) and

68. Suppose f is differentiable on R and a is a real number.
Find all points on the graph of the function Let F(x) =f (x) and Gx)=1f (x)]* Find expressions
fx)=2 sin x + sin’x at which the tangent line is horizontal. for (a) F'(x) and (b) G'(%).




(h(x))), where n(1) =2,9(2) =3,h'(1) = 4,
= 6. Find r'(1).

: differentiable function and f(x) = xg(x?), find
ofg,g’,and g".
(3f(4£(»)), where f(0) = 0 and f'(0) = 2,

L (e (), where £(1) = 2,£(2) = 3,F(1) = 4,
5,and f'(3) = 6, find F'(1).

the given derivative by finding the first few derivatives
the pattern that occurs.

74. D* x sin x

lacement of a particle on a vibrating string is given
: equation
s(f) = 10 + § sin(10777)

: 5 is measured in centimeters and ¢ in seconds. Find the
ity of the particle after ¢ seconds.

uation of motion of a particle is given by
cos(wt + O), the particle is said to undergo simple
¢ motion.
the velocity of the particle at time ¢.
n is the velocity 0?

pheid variable star is a star whose brightness alternately

s and decreases. The most easily visible such star is
Cephei, for which the interval between times of maxi-
brightness is 5.4 days. The average brightness of this star
and its brightness changes by +0.35. In view of these
ﬂ)e brightness of Delta Cephei at time ¢, where ¢ is mea-
in days, has been modeled by the function

2t
B(t) = 4.0 + 0.35 sin| —
® S‘“( 54 )
nd the rate of change of the brightness after ¢ days.

id, correct to two decimal places, the rate of increase
one day.

g mple 4 .in Section 1.3 we arrived at a model for the
0of daylight (in hours) in Philadelphia on the 7th day of

2T
L(t) = 12 + 2.8 sin| —(r —
sin 365 (t — 80)

k. model. to compare how the number of hours of day-
® 1§ Increasing in Philadelphia on March 21 and May 21.
2 cle moves along a straight line with displacement s(¢),
ty o(t), and acceleration a(r). Show that

dv

ds

fin the difference between the meanings of the derivatives
and dv/ds.

a(t) = o(p)
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Air is being pumped into a spherical weather balloon. At any

[@s]8l.

time ¢, the volume of the balloon is V(¢) and its radius is r(z).
(a) What do the derivatives dV/dr and dV/dt represent?
(b) Express dV/dt in terms of dr/dt.

Computer algebra systems have commands that differentiate
functions, but the form of the answer may not be convenient
and so further commands may be necessary to simplify the
answer.

(a) Use a CAS to find the derivative in Example 5 and com-
pare with the answer in that example. Then use the sim-
plify command and compare again.

(b) Use a CAS to find the derivative in Example 6. What hap-
pens if you use the simplify command? What happens if
you use the factor command? Which form of the answer
would be best for locating horizontal tangents?

. (a) Use a CAS to differentiate the function

¥t —x 1
flo) = *+x+1
and to simplify the result.
(b) Where does the graph of f have horizontal tangents?
(c) Graph f and f' on the same screen. Are the graphs con-
sistent with your answer to part (b)?

. Use the Chain Rule to prove the following.

(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

. Use the Chain Rule and the Product Rule to give an

alternative proof of the Quotient Rule.

[Hint: Write £(x)/g(x) = f(x)[g(x)]™"]

. (a) If n is a positive integer, prove that

d . .
I (sin"x cos nx) = nsin" 'x cos(n + 1)x

(b) Find a formula for the derivative of y = cos"x cos nx
that is similar to the one in part (a).

. Suppose y = f(x) is a curve that always lies above the x-axis

and never has a horizontal tangent, where f is differentiable
everywhere. For what value of y is the rate of change of y?
with respect to x eighty times the rate of change of y with
respect to x?

Use the Chain Rule to show that if 6 is measured in degrees,

then

d T

— (sinf) = ——cos @

do \eini€) 180
(This gives one reason for the convention that radian measure
is always used when dealing with trigonometric functions in
calculus: The differentiation formulas would not be as simple
if we used degree measure.)
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88. (a) Write | x| = v/x? and use the Chain Rule to show that 89. If y = f(u) and u = g(x), where f and g are twice differen-
tiable functions, show that
d _x 2 2
== dly _ &y (du)  dy d'u
dx? dx du dx*

() If f(x) = |sin x|, find f'(x) and sketch the graphs of f

and fA Where is f not differentiable? 90. If y = f(u) and u = g(x), where f and g possess third deriva-
(c) If g(x) = sin (x) and sketch the graphs of g tives, find a formula for d*y/dx? similar to the one given in

and g’ Where is g not differentiable? Exercise 89.

r\r’f‘Ll eED WHERE SHOULD A PILOT START DESCENT?

PROJECT e . ‘ = . . - ,_‘,.‘,_W.T...‘,v —
= An approach path for an aircraft landing is shown in the figure and satisfies the following
conditions:
y (i) The cruising altitude is & when descent starts at a horizontal distance € from touchdown at
= § the origin.
(ii) The pilot must maintain a constant horizontal speed v throughout descent.
(ili) The absolute value of the vertical acceleration should not exceed a constant k (which is much
y=Pl) h less than the acceleration due to gravity).
I. Find a cubic polynomial P(x) = ax’® + bx* + cx + d that satisfies condition (i) by imposing
suitable conditions on P(x) and P'(x) at the start of descent and at touchdown.
0 ¢ RN 2. Use conditions (ii) and (iii) to show that
6hv?

e

3. Suppose that an airline decides not to allow vertical acceleration of a plane to exceed
k = 860 mi/h2 If the cruising altitude of a plane is 35,000 ft and the speed is 300 mi/h, how
far away from the airport should the pilot start descent?

[A44. Graph the approach path if the conditions stated in Problem 3 are satisfied.

3.6 | IMPLICIT DIFFERENTIATION

The functions that we have met so far can be described by expressing one variable expli&
itly in terms of another variable—for example,

y=+x3+1 or y=xsinx

or, in general, y = f(x). Some functions, however, are defined implicitly by a relatiOh
between x and y such as

1] x2+y?=25

or

x* + y* = 6xy

In some cases it is possible to solve such an equation for y as an explicit function (or SGV‘
eral functions) of x. For instance, if we solve Equation 1 for y, we get y = £ 25 = Xg
so two of the functions determined by the implicit Equation 1 are f(x) = \/55_—/)(2
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g(x) = —/25 — x2. The graphs of f and g are the upper and lower semicircles of the
circle x2 + y? = 25. (See Figure 1.)

D y Y4

FIGURE | (a) x>+ y*=25 (b) f(x)=+v25—x* (©) glx)=—v25—x*

It's not easy to solve Equation 2 for y explicitly as a function of x by hand. (A com-
puter algebra system has no trouble, but the expressions it obtains are very complicated.)
Nonetheless, (2) is the equation of a curve called the folium of Descartes shown in
Figure 2 and it implicitly defines y as several functions of x. The graphs of three such func-
tions are shown in Figure 3. When we say that f is a function defined implicitly by Equa-
tion 2, we mean that the equation

x* + [f()] = 6xf(x)
is true for all values of x in the domain of f.

y y )’T YA

a /

N
E 2 The folium of Descartes FIGURE 3 Graphs of three functions defined by the folium of Descartes

Fortunately, we don’t need to solve an equation for y in terms of x in order to find the
derivative of y. Instead we can use the method of implicit differentiation. This consists of
differentiating both sides of the equation with respect to x and then solving the resulting
equation for y'. In the examples and exercises of this section it is always assumed that the
given equation determines y implicitly as a differentiable function of x so that the method

of implicit differentiation can be applied.

2 EXAMPLE |
dy
dx’

(b) Find an equation of the tangent to the circle x> + y*

(a) If x* + y* = 25, find
= 25 at the point (3, 4).

SOLUTION |
(a) Differentiate both sides of the equation x* + =25

4 d
d (xzy)“—:E(ZS)

dx

d
dx .
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Remembering that y is a function of x and using the Chain Rule, we have

d ,_d 2B _, D
dx(y) dy(y)dx 2y

d
Thus 2x+2y21=0
X

Now we solve this equation for dy/dx:

An equation of the tangent to the circle at (3, 4) is therefore
y—4=-3x-3) or 3x + 4y =25
SOLUTION 2
(b) Solving the equation x2+ y?=25wegety= +./25 — x*. The point (3, 4) lies on

the upper semicircle y = /25 — x? and so we consider the function f(x) = /25 — X2
Differentiating f using the Chain Rule, we have

d
fi(x) = 1025 - P ME —— (25 — x%)
dx

TR ST THR.. —
=3(25 x2)1(2x)— m

, 3 3
» Example 1 illustrates that even when it s So @ =- /75 — 32 =7
possible to solve an equation explicitly foryin
terms of x, it may be easier to use implicit A
differentiation. and, as in Solution 1, an equation of the tangent is 3x + 4y = 25. ‘ Bl

NOTE1| The expression dy/dx = —x/y in Solution 1 gives the derivative in terms off
both x and y. It is correct no matter which function y is determined by the given equationt
For instance, for y = fx) =25 — x2 we have ‘

QU

X

—_ e —_————

25 — x?

Y

X

< | =

whereas for y = g(x) = —4/25 — x* we have

dy X

X X
.y 5 -x V55—




an mathematician Niels Abel
524 that no genera| formula can be
2 1001s of a fifth-degree equation in
icals. !.ater the French mathemati-
8 Galois proved that it is impossible
al fnrmula for the roots of an
#quation (in terms of algebraic
:nthe coefficients) if » is any integer
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4 EXAMPLE 2

(a) Find y' if x* + y* = 6xy.

(b) Find the tangent to the folium of Descartes x* + y* = 6xy at the point (3, 3).
(c) At what point in the first quadrant is the tangent line horizontal?

SOLUTION
(a) Differentiating both sides of x* + y* = 6xy with respect to x, regarding y as a func-
tion of x, and using the Chain Rule on the term y* and the Product Rule on the term 6xy,
we get

3x? + 3y%y’ = 6xy’ + 6y

or x2+ y2y =2xy + 2y

We now solve for y': y2y' — 2xy' =2y — x?
(5 - 20y =2 -

2y — x*
y? — 2x

(b) When x =y = 3,
, _2:3-3 _

- -
Y T332 5.3

and a glance at Figure 4 confirms that this is a reasonable value for the slope at (3, 3). So
an equation of the tangent to the folium at (3, 3) is

y—3=—1(x—3) or x+y=6

(c) The tangent line is horizontal if y’ = 0. Using the expression for y’ from part (a),
we see that y' = 0 when 2y — x*> = 0 (provided that y> — 2x # 0). Substituting y = 3x2
in the equation of the curve, we get

x* + (3x?) = 6x(3x7)

which simplifies to x® = 16x>. Since x # 0 in the first quadrant, we have x* = 16. If

x = 16" = 24/ then y = 3(2%*) = 2%/, Thus the tangent is horizontal at (2%, 2%3),
which is approximately (2.5198, 3.1748). Looking at Figure 5, we see that our answer is
reasonable. .0

There is a formula for the three roots of a cubic equation that is like the quad-
ratic formula but much more complicated. If we use this formula (or a computer algebra
system) to solve the equation x* + y* = 6xy for y in terms of x, we get three functions
determined by the equation:

y=fx) = \3/—%x3 + Vix6 —8x® + \3/—%,@ — JIx® —8x3

y =i~ = VBRIP + Vi - 8r — =50 - Vi - 8x )

(These are the three functions whose graphs are shown in Figure 3.) You can see that the
method of implicit differentiation saves an enormous amount of work in cases such as this.
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FIGURE 6

Figure 7 shows the graph of the curve
x* + y* = 16 of Example 4. Notice that it's
a stretched and flattened version of the circle
x? + y? = 4. For this reason it's sometimes
called a fat circle. It starts out very steep on the
left but quickly becomes very flat. This can be
seen from the expression

FIGURE 7

CHAPTER 3 DERIVATIVES

Moreover, implicit differentiation works just as easily for equations such as
y3 4+ 3x%y* + 5x* =12

for which it is impossible to find a similar expression for y in terms of x.

EXAMPLE 3 Find y’ if sin(x + y) = y*cos x.

SOLUTION Differentiating implicitly with respect to x and remembering that y is a function
of x, we get

cos(x + y) + (1 +y') = y*(—sin x) + (cos x)(2yy")

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain
Rule on the right side.) If we collect the terms that involve y’, we get

cos(x + y) + y*sin x = (2ycos x)y’ — cos(x +y) -y

y%sin x + cos(x + y)

So o
) 2y cos x — cos(x + y)

Figure 6, drawn with the implicit-plotting command of a computer algebra system,
shows part of the curve sin(x + y) = y?cos x. As a check on our calculation, notice that
y’ = —1 when x = y = 0 and it appears from the graph that the slope is approximately
—1 at the origin. O

The following example shows how to find the second derivative of a function that is
defined implicitly.
EXAMPLE 4 Find y” if x* + y* = 16.
SOLUTION Differentiating the equation implicitly with respect to x, we get

4x + 4y*y' =0

Solving for y’ gives

& ==

To find y” we differentiate this expression for y’ using the Quotient Rule and remember-
ing that y is a function of x:

L, d x°
Vi=——-——] =
g dx y?

y3 . 3)(2 . x3(3y2y’)

¥

Y} (d/dx)(x*) — x* (d/dx)(y*)
(»*)

If we now substitute Equation 3 into this expression, we get

3

x
3 2,3___3 320
i i < y3> 30y xS 30+ xY)

W= —

6 7 7

b y y :
But the values of x and y must satisfy the original equation x* + y* = 16. So the answeli
simplifies to "

_36) _ X g

y’ y’

"o
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, 29. 2(x2 + y2)? = 25(x* — y?)  30. y(y* — 4) =x*(x* - 5)
implicit differentiation. 3,1 0, =2)
tion explicitly for y and differentiate to get y’ in (lemniscate) (devil’s curve)

‘your solutions to parts (a) and (b) are consistent by Y y
the expression for y into your solution for
0 X
2 4x2 N5 9_}12 = 36 W

4. cosx+\/;=5

31. (a) The curve with equation y* = 5x* — x?is called a
kampyle of Eudoxus. Find an equation of the tangent
6. 2./x +y =3 line to this curve at the point (1, 2).

(b) Ilustrate part (a) by graphing the curve and the tangent
line on a common screen. (If your graphing device will
LY +Hxtyi=1+xt graph implicitly defined curves, then use that capability. If
not, you can still graph this curve by graphing its upper

and lower halves separately.)

ly/dx by implicit differentiation.
L 2x +xly —xyd=2

. 1+ x = sin(xy?)

.y sin(x?) = x sin(y?) ) )
L 32. (a) The curve with equation y> = x* + 3x? is called the

- Vxty=1+xYy Tschirnhausen cubic. Find an equation of the tangent

Yy line to this curve at the point (1, —2).

1+ x® (b) At what points does this curve have horizontal tangents?

. sinx + cosy = sinx cos y (c) Iustrate parts (a) and (b) by graphing the curve and the

tangent lines on a common screen.

. tan(x — y) =

+ 2[f()] = 10 and £(1) = 2, find £'(1). 33-36 Find y” by implicit differentiation.

+ xsin g(x) = x?, find g'(0). 33.9x° +y* =9 4. Vx +y =1
: | G x4 oyt = g
d y as the independent variable and x as the depen- 35, s : 6 : ¢
le and use implicit differentiation to find dx/dy.

X’y + 2xy*=0 24, ysecx =xtany . Fanciful shapes can be created by using the implicit plotting
capabilities of computer algebra systems.
(a) Graph the curve with equation

* implicit differentiation to find an equation of the y(y? = Dy —2) =x(x — 1)(x — 2)

€ 10 the curve at the given point.
el P . At how many points does this curve have horizontal
o > (L1)  (ellipse) tangents? Estimate the x-coordinates of these points.
B2+ x=2 (1,2) (hyperbola) (b) Fil(lid(gqu)itions of the tangent lines at the points (0, 1)
and (0, 2).
-+ 2y — x)* 28, x* + yP =4 (c) Find the exact x-coordinates of the points in part (a).
(_3 V3, 1) (d) Create even more fanciful curves by modifying the equa-

' tion in part (a).
(astroid) ion in part (a)

. (a) The curve with equation

23 + yt—yd =x* — 2x* + x?

has been likened to a bouncing wagon. Use a computer

algebra system to graph this curve and discover why.
(b) At how many points does this curve have horizontal

tangent lines? Find the x-coordinates of these points.
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[39.] Find the points on the lemniscate in Exercise 29 where the 46, x>+ y*=ax, x*+ y* = by
tangent is horizontal. o
. @7) y=cx? x*+2*=k
40. Show by implicit differentiation that the tangent to the ellipse
5 5 48. y=ax®, x*+3y’=0b
X y i
—_— =
az bZ
at the point (xo, yo) is [49. The equation x> ~ xy + y* = 3 represents a “rotated
. , ellipse,” that is, an ellipse whose axes are not parallel to the
—02 ) Ozy =1 coordinate axes. Find the points at which this ellipse crosses
a b the x-axis and show that the tangent lines at these points are
41. Find an equation of the tangent line to the hyperbola parallel.
x? B y? 50. (a) Where does the normal line to the ellipse
PEREY) x2 — xy + y? = 3 at the point (—1, 1) intersect the
at the point (<o, o) ellipse a second time?
P R0y Y A (b) Tllustrate part (a) by graphing the ellipse and the normal
42. Show that the sum of the x- and y-intercepts of any tangent line.
line to the curve \/; i \/; =Veis equal to c. 51. Find all points on the curve x%y* 4+ xy = 2 where the slope
43. Show, using implicit differentiation, that any tangent line at of the tangent line is —1.
aag(.)lzt OP P[O g gimlesvat ket QR perpendicdla-io Ui 52. Find equations of both the tangent lines to the ellipse
g ’ x? + 4y? = 36 that pass through the point (12, 3).
44. The Power Rule can be proved using implicit differentiation 53. The figure shows a lamp located three units to the right of
¢ ; . = ) .
Ao {06 bl w”h.ere s 1 i P/ Ky dm.j the y-axis and a shadow created by the elliptical region
y = f(x) = x" is assumed beforehand to be a differentiable x? + 4y? < 5. If the point (5, 0) is on the edge of the
function. If y = x”/%, then y* = x”. Use implicit differentia- shadow, how f'ar above the x-ax’is is the lamp located?
! tion to show that ‘ ’ p )
§ e ﬁx(,y/qm y
q o
45-48 Two curves are orthogonal if their tangent lines are per- ////// /

/
/

/. &

. = Q_/ ’ ’
x2+4y*=5 //
/

pendicular at each point of intersection. Show that the given fami-
lies of curves are orthogonal trajectories of each other, that is,
every curve in one family is orthogonal to every curve in the
other family. Sketch both families of curves on the same axes.

«— 0 —>|

r 45. x>+ y>=r* ax+by=0

3.7| RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES

We know that if y = f(x), then the derivative dy/dx can be interpreted as the rate of chang
of y with respect to x. In this section we examine some of the applications of this idea
physics, chemistry, biology, economics, and other sciences.

Let’s recall from Section 3.1 the basic idea behind rates of change. If x changes fron

| X1 to x,, then the change in x is
Ax =x, — x;
and the corresponding change in y is
Ay = f(x2) — f(x1)

The difference quotient

by _ f) = fO)
Ax

X2 — X1




- average rate of change
‘(x,) = instantaneous rate
of change
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is the average rate of change of y with respect to x over the interval [x;, x,] and can be
interpreted as the slope of the secant line PQ in Figure 1. Its limit as Ax — 0 is the deriv-
ative f'(x;), which can therefore be interpreted as the instantaneous rate of change of y
with respect to x or the slope of the tangent line at P(x,, f(x;)). Using Leibniz notation,
we write the process in the form

4 _ pm

S = iy ==

dx A0 Ax
Whenever the function y = f(x) has a specific interpretation in one of the sciences, its
derivative will have a specific interpretation as a rate of change. (As we discussed in Sec-

tion 3.1, the units for dy/dx are the units for y divided by the units for x.) We now look at
some of these interpretations in the natural and social sciences.

PHYSICS

If s = f(2) is the position function of a particle that is moving in a straight line, then As/Az
represents the average velocity over a time period A¢, and v = ds/dt represents the instan-
taneous velocity (the rate of change of displacement with respect to time). The instanta-
neous rate of change of velocity with respect to time is acceleration: a(r) = v'(¢) = s"(z).
This was discussed in Sections 3.1 and 3.2, but now that we know the differentiation for-
mulas, we are able to solve problems involving the motion of objects more easily.

W4 EXAMPLE 1 The position of a particle is given by the equation
s=f@)=1—6t2+ 9t

where ¢ is measured in seconds and s in meters.

(a) Find the velocity at time z.

(b) What is the velocity after 2 s? After 4 s?

(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the positive direction)?

(e) Draw a diagram to represent the motion of the particle.

(f) Find the total distance traveled by the particle during the first five seconds.

(g) Find the acceleration at time ¢ and after 4 s.

(h) Graph the position, velocity, and acceleration functions for 0 < ¢ < 5.

(i) When is the particle speeding up? When is it slowing down?

SOLUTION

(a) The velocity function is the derivative of the position function.

s=f)=1t"—6t2+ 9t

ds
N=—=3"-12t+9
o) = —

(b) The velocity after 2 s means the instantaneous velocity when ¢ = 2, that is,

v(2) = L - 32 — 122) + 9= -3 m/s
dt |i=
The velocity after 4 s is
v(4) = 3(4)* - 124) + 9=9m/s
c) The particle is at rest when v(f) = 0, that is,
32— 12t +9=3>—4t+3)=3¢t—- 1)t —-3)=0
and this is true when t = 1 or t = 3. Thus the particle is at rest after 1 s and after 3 s.

e e o5 AT s P e
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t=3

s=0

t=0 t=1 $
s=0 s=4

FIGURE 2

FIGURE 3

EE3d in Module 3.7 you can see an anima-
tion of Figure 4 with an expression for s that
you can choose yourself.

FIGURE 4

(d) The particle moves in the positive direction when »(z) > 0, that is,
32— 12t +9=3¢t— 1Dt —-3)>0

This inequality is true when both factors are positive (r > 3) or when both factors are
negative (¢t < 1). Thus the particle moves in the positive direction in the time intervals
t < 1 and ¢ > 3. It moves backward (in the negative direction) when 1 < r < 3.

(e) Using the information from part (d) we make a schematic sketch in Figure 2 of th
motion of the particle back and forth along a line (the s-axis).

(f) Because of what we learned in parts (d) and (e), we need to calculate the distance;
traveled during the time intervals [0, 1], [1, 3], and [3, 5] separately.
The distance traveled in the first second is

|f(1) —f©O)|=[4~-0]=4m
From 7 = 1 to t = 3 the distance traveled is
|f®) —fW)]|=10-4[=4m
From 7 = 3 to t = 5 the distance traveled is
|£5) = f3)[=]20 — 0| =20m
The total distance is 4 + 4 + 20 = 28 m.

(g) The acceleration is the derivative of the velocity function:

d? d
a(t) = .

= =6t — 12
dt” dt

a(4) = 6(4) — 12 = 12 m/s?

(h) Figure 3 shows the graphs of s, v, and a.

(i) The particle speeds up when the velocity is positive and increasing (v and a are bo
positive) and also when the velocity is negative and decreasing (v and a are both nega
tive). In other words, the particle speeds up when the velocity and acceleration have tl
same sign. (The particle is pushed in the same direction it is moving.) From Figure 3
see that this happens when 1 < ¢ < 2 and when ¢ > 3. The particle slows down wher
v and a have opposite signs, that is, when 0 < ¢ < 1 and when 2 < ¢ < 3. Figure 4 st
marizes the motion of the particle.

0
=" -
forward backward forward
slows speeds slows speeds
down up down up




FIGURE 5
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EXAMPLE 2 If a rod or piece of wire is homogeneous, then its linear density is uniform
and is defined as the mass per unit length (p = m/l) and measured in kilograms per
meter. Suppose, however, that the rod is not homogeneous but that its mass measured
from its left end to a point x is m = f(x), as shown in Figure 5.

|
[

This part of the rod has mass f(x).

The mass of the part of the rod that lies between x = x; and x = x; is given by
Am = f(x,) — f(x1), so the average density of that part of the rod is

A —
average density = el o) = )
Ax %3 — Xi
If we now let Ax — O (that is, x, — x;), we are computing the average density over
smaller and smaller intervals. The linear density p at x; is the limit of these average
densities as Ax — 0; that is, the linear density is the rate of change of mass with respect
to length. Symbolically,

N

—: Tim —— =
p A:I—I}O Ax dx

Thus the linear density of the rod is the derivative of mass with respect to length.
For instance, if m = f(x) = \/; , where x is measured in meters and m in kilograms,
then the average density of the part of the rod given by 1 < x < 1.2 is

Am _ f(12) —f() _ Y121

Ax 122 — 1 0.2

~ 0.48 kg/m

while the density right at x = 1 is

dm 1
o = =050k O
B Ly, 2Rl g/m

EXAMPLE 3 A current exists whenever electric charges move. Figure 6 shows part of
a wire and electrons moving through a plane surface, shaded red. If AQ is the net charge
that passes through this surface during a time period At, then the average current during
this time interval is defined as
AQ O, — O
average current = —— = ————
At L—t
If we take the limit of this average current over smaller and smaller time intervals, we
get what is called the current / at a given time #;:
A dQ
I=lim —=—
A0 At dt
Thus the current is the rate at which charge flows through a surface. It is measured in
units of charge per unit time (often coulombs per second, called amperes). Ll
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Velocity, density, and current are not the only rates of change that are important i
physics. Others include power (the rate at which work is done), the rate of heat flow, tem,

perature gradient (the rate of change of temperature with respect to position), and the
of decay of a radioactive substance in nuclear physics.

CHEMISTRY

EXAMPLE 4 A chemical reaction results in the formation of one or more substances
(called products) from one or more starting materials (called reactants). For instance, th
“gquation”

2H, + 0O,— 2H20

indicates that two molecules of hydrogen and one molecule of oxygen form two mole- b
cules of water. Let’s consider the reaction

where A and B are the reactants and C is the product. The concentration of a reactant
is the number of moles (1 mole = 6.022 X 102 molecules) per liter and is denoted by =
[A]. The concentration varies during a reaction, sO [A], [B], and [C] are all functions o
time (¢). The average rate of reaction of the product C over a time interval h S 1 < 1,

_é[_c_]_ _ [Cl(r) — [C](t)

At h—h

But chemists are more interested in the instantaneous rate of reaction, which is
obtained by taking the limit of the average rate of reaction as the time interval At
approaches 0:

. . A[C] _ dIC]
rate of reaction = lim —=— = 7~
ar—0 At dt

Since the concentration of the product increases as the reaction proceeds, the derivative
d[C)/dt will be positive, and so the rate of reaction of C is positive. The concentrations
of the reactants, however, decrease during the reaction, so, to make the rates of reaction
of A and B positive numbers, we put minus signs in front of the derivatives d [Al/at and
d[B]/dt. Since [A] and [B] each decrease at the same rate that [C] increases, we have

d[c] _ _dlAl d[B]

———

dt dt dt

—_——

rate of reaction =

More generally, it turns out that for a reaction of the form

aA + bB—cC + aD
we have

d[A]

dt

d[B]

dt

14dc]

L d[D]
dt d dt

— —_— — ——

Ql—‘
SHES

The rate of reaction can be determined from data and graphical methods. In some cases:
there are explicit formulas for the concentrations as functions of time, which enable U
compute the rate of reaction (see Exercise 22).
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EXAMPLE 5 One of the quantities of interest in thermodynamics is compressibility. If a
given substance is kept at a constant temperature, then its volume V depends on its pres-
sure P. We can consider the rate of change of volume with respect to pressure—namely,
the derivative dV/dP. As P increases, V decreases, so dV/dP < 0. The compressibility
is defined by introducing a minus sign and dividing this derivative by the volume V:

1 dv
isothermal compressibility = 8 = VP

Thus B measures how fast, per unit volume, the volume of a substance decreases as the
pressure on it increases at constant temperature.

For instance, the volume V (in cubic meters) of a sample of air at 25°C was found to
be related to the pressure P (in kilopascals) by the equation

9:3
V=_

The rate of change of V with respect to P when P = 50 kPa is

av
dP P=50

5.3

_— e —_—— — 3
2500 0.00212 m’/kPa

The compressibility at that pressure is

1dv| 000212

P= "V aPlrw 33

50

= 0.02 (m*/kPa)/m?

BIOLOGY

EXAMPLE 6 Let n = f(¢) be the number of individuals in an animal or plant popula-
tion at time ¢. The change in the population size between the times t = #; and ¢t = 1, is
An = f(t;) — f(t:), and so the average rate of growth during the time period , < t < f,
is .

An _ f(n) —f®)

At L —h

average rate of growth =

The instantaneous rate of growth is obtained from this average rate of growth by let-
ting the time period At approach O:

e = Tim, o= 2
owin r = 10 T B
&t e s At dt

Strictly speaking, this is not quite accurate because the actual graph of a population
function n = f(¢) would be a step function that is discontinuous whenever a birth or
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death occurs and therefore not differentiable. However, for a large animal or plant
population, we can replace the graph by a smooth approximating curve as in Figure 7.

n1 7___0

e

b

FIGURE 7 R
A smooth curve approximating 0 t
a growth function

To be more specific, consider a population of bacteria in a homogeneous nutrient
medium. Suppose that by sampling the population at certain intervals it is determined
that the population doubles every hour. If the initial population is n and the time 7 is
measured in hours, then

f(1) = 2£(0) = 2no
£2) =2f(1) = 2’no
f(3) =2f(2) = 2°no

and, in general,

f(f) = 2’?’!()

The population function is n = ne2'.

This is an example of an exponential function. In Chapter 7 we will discuss expon
tial functions in general; at that time we will be able to compute their derivatives and
thereby determine the rate of growth of the bacteria population.

EXAMPLE 7 When we consider the flow of blood through a blood vessel, such as a vt
or artery, we can model the shape of the blood vessel by a cylindrical tube with radit
and length [ as illustrated in Figure 8.

= i
_i___lli_}___ s e RS I e
] P
FIGURE 8 G SaNEERT ;
i

Blood flow in an artery —

Because of friction at the walls of the tube, the velocity v of the blood is greatest
along the central axis of the tube and decreases as the distance r from the axis incre
until » becomes O at the wall. The relationship between v and r is given by the law (
laminar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1¢




d information, see W. Nichols
{eds.), McDonald’s Blood Flow
vetic, Experimental, and Clinical
INew York: Oxford University
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This law states that

P
=___R2_ 2
M 9=y =)

where 7) is the viscosity of the blood and P is the pressure difference between the ends
of the tube. If P and [ are constant, then v is a function of r with domain [0, R].

The average rate of change of the velocity as we move from r = r; outward to r = r,
is given by

ﬂ _ v(r2) — v(r)
Ar n—n

and if we let Ar — 0, we obtain the velocity gradient, that is, the instantaneous rate of
change of velocity with respect to r:

velocity gradient = li all o
= lim — = —
= ar—0 Ar dr
Using Equation 1, we obtain
d P P
& =il = 2=
dr  4nl 2nl

For one of the smaller human arteries we can take n = 0.027, R = 0.008 cm, [ = 2 c¢m,
and P = 4000 dynes/cm?, which gives

, 4000
4(0.027)2

~ 1.85 X 10%6.4 X 107° — r?)

(0.000064 — r?)

At r = 0.002 cm the blood is flowing at a speed of

v(0.002) =~ 1.85 X 10%(64 X 107° — 4 X 107%)
= 1.11 cm/s

and the velocity gradient at that point is

dv 4000(0.002)
= —-——--= =74
dr [r=a00 2(0.027)2 74 (cm/s)/cm

To get a feeling for what this statement means, let’s change our units from centi-
meters to micrometers (1 cm = 10,000 wm). Then the radius of the artery is 80 wm. The
velocity at the central axis is 11,850 wm/s, which decreases to 11,110 wm/s at a distance
of r = 20 wm. The fact that dv/dr = —74 (um/s)/um means that, when r = 20 wm, the
velocity is decreasing at a rate of about 74 pwm/s for each micrometer that we proceed
away from the center. O

ECONOMICS

I EXAMPLE 8 Suppose C(x) is the total cost that a company incurs in producing x units
of a certain commodity. The function C is called a cost function. If the number of items
produced is increased from x; to x,, then the additional cost is AC = C(x;) — C(xy),
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and the average rate of change of the cost is

AcC _ C(x2) — C(xy) _ C(x; + Ax) — C(x;)
Ax X5 = %1 Ax

The limit of this quantity as Ax — 0, that is, the instantaneous rate of change of cog
with respect to the number of items produced, is called the marginal cost by econop

marginal cost = lim —A—C = ﬁg
g a0 Ax | dx

[Since x often takes on only integer values, it may not make literal sense to let Ax
approach 0, but we can always replace C(x) by a smooth approximating function as
Example 6.]

Taking Ax = 1 and n large (so that Ax is small compared to n), we have

C'(n) = C(n + 1) = C(n)

Thus the marginal cost of producing » units is approximately equal to the cost of pr
ducing one more unit [the (n + 1)st unit].
It is often appropriate to represent a total cost function by a polynomial

C(x) = a + bx + cx* + dx®

where a represents the overhead cost (rent, heat, maintenance) and the other terms
represent the cost of raw materials, labor, and so on. (The cost of raw materials may
proportional to x, but labor costs might depend partly on higher powers of x because
overtime costs and inefficiencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of produ
X 1tems 18

C(x) = 10,000 + 5x + 0.01x?
Then the marginal cost function is
C'(x) =5+ 0.02x
The marginal cost at the production level of 500 items is
C'(500) = 5 + 0.02(500) = $15/item

This gives the rate at which costs are increasing with respect to the productioh level
when x = 500 and predicts the cost of the 501st item.
The actual cost of producing the 501st item is

C(501) — C(500) = [10,000 + 5(501) + 0.01(501)*]
— [10,000 + 5(500) + 0.01(500)*]
= $15.01

Notice that C'(500) = C(501) — C(500).

Economists also study marginal demand, marginal revenue, and marginal profit,
are the derivatives of the demand, revenue, and profit functions. These will be cons
in Chapter 4 after we have developed techniques for finding the maximum and min
values of functions. .




SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES I 179

OTHER SCIENCES

Rates of change occur in all the sciences. A geologist is interested in knowing the rate at
which an intruded body of molten rock cools by conduction of heat into surrounding rocks.
An engineer wants to know the rate at which water flows into or out of a reservoir. An
urban geographer is interested in the rate of change of the population density in a city as
the distance from the city center increases. A meteorologist is concerned with the rate of
change of atmospheric pressure with respect to height (see Exercise 17 in Section 7.5).

In psychology, those interested in learning theory study the so-called learning curve,
which graphs the performance P(f) of someone learning a skill as a function of the train-
ing time 7. Of particular interest is the rate at which performance improves as time passes,
that is, dP/dt.

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If p(f) denotes the proportion of a population that knows a rumor
by time 7, then the derivative dp/dr represents the rate of spread of the rumor (see Exer-
cise 59 in Section 7.2).

A SINGLE IDEA, MANY INTERPRETATIONS

Velocity, density, current, power, and temperature gradient in physics; rate of reaction and
compressibility in chemistry; rate of growth and blood velocity gradient in biology; mar-
ginal cost and marginal profit in economics; rate of heat flow in geology; rate of improve-
ment of performance in psychology; rate of spread of a rumor in sociology—these are all
special cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its
abstractness. A single abstract mathematical concept (such as the derivative) can have dif-
ferent interpretations in each of the sciences. When we develop the properties of the math-
ematical concept once and for all, we can then turn around and apply these results to all of
the sciences. This is much more efficient than developing properties of special concepts in
each separate science. The French mathematician Joseph Fourier (1768—1830) put it suc-
cinctly: “Mathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.”

particle moves according to a law of motion s = £(z),
where 7 is measured in seconds and s in feet.

d the velocity at time 7.

at is the velocity after 3 s?

en is the particle at rest?

en is the particle moving in the positive direction?

d the total distance traveled during the first 8 s.

W a diagram like Figure 2 to illustrate the motion of the
ie.

the acceleration at time 7 and after 3 s.

the position, velocity, and acceleration functions for
S 8.

is the particle speeding up? When is it slowing down?

® = 122 4 36¢ 2. f(z) = 0.01#* — 0.04¢3

3. f(¢) = cos(mt/4), t < 10

4. f(t) =1t/(1 + t?)

5. Graphs of the velocity functions of two particles are shown,
where 7 is measured in seconds. When is each particle speed-
ing up? When is it slowing down? Explain.

(@ v (b) v
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6. Graphs of the position functions of two particles are shown,
where # is measured in seconds. When is each particle speed-
ing up? When is it slowing down? Explain.

(a) s (b) s

7. The position function of a particle is given by
s=1>—45t>—T,t=0.
(a) When does the particle reach a velocity of 5 m/s?
(b) When is the acceleration 0? What is the significance of
this value of 7?

8. If a ball is given a push so that it has an initial velocity of
5 m/s down a certain inclined plane, then the distance it has
rolled after ¢ seconds is s = 57 + 372,
(a) Find the velocity after 2 s.

(b) How long does it take for the velocity to reach 35 m/s?

9. If a stone is thrown vertically upward from the surface of the
moon with a velocity of 10 m/s, its height (in meters) after
t seconds is h = 10t — 0.83¢%
(a) What is the velocity of the stone after 3 s?
(b) What is the velocity of the stone after it has risen 25 m?

10. If a ball is thrown vertically upward with a velocity of
80 ft/s, then its height after ¢ seconds is s = 80t — 167>
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is 96 ft above the
ground on its way up? On its way down?

11. (a) A company makes computer chips from square wafers
of silicon. It wants to keep the side length of a wafer very
close to 15 mm and it wants to know how the area A(x) of
a wafer changes when the side length x changes. Find
A’(15) and explain its meaning in this situation.

(b) Show that the rate of change of the area of a square with
respect to its side length is half its perimeter. Try to
explain geometrically why this is true by drawing a
square whose side length x is increased by an amount Ax.

How can you approximate the resulting change in area
AA if Ax is small?

12. (a) Sodium chlorate crystals are easy to grow in the shape of
cubes by allowing a solution of water and sodium chlorate
to evaporate slowly. If V is the volume of such a cube
with side length x, calculate dV/dx when x = 3 mm and
explain its meaning.

(b) Show that the rate of change of the volume of a cube with
respect to its edge length is equal to half the surface area of
the cube. Explain geometrically why this result is true by
arguing by analogy with Exercise 11(b).

13. (a) Find the average rate of change of the area of a circle with
respect to its radius 7 as r changes from

(i) 2t03 (i) 2t0 2.5 (iii) 2to 2.1

(b) Find the instantaneous rate of change when r = 2.

(c) Show that the rate of change of the area of a circle with
respect to its radius (at any r) is equal to the circumference
of the circle. Try to explain geometrically why this
is true by drawing a circle whose radius is increased
by an amount Ar. How can you approximate the resulting
change in area AA if Ar is small?

14. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of 60 cm/s. Find the rate at which
the area within the circle is increasing after (a) 1 s, (b) 3 s, and
(c) 5 s. What can you conclude?

[I5.] A spherical balloon is being inflated. Find the rate of increase
of the surface area (S = 4mr?) with respect to the radius r
when r is (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can
you make?

16. (a) The volume of a growing spherical cellisV= %wr3, where
the radius r is measured in micrometers (1 pm = 10°°m).
Find the average rate of change of V with respect to r when =
r changes from
(i) 5to 8 pm (ii) 5to 6 pm (iii) 5t0 5.1 pm

(b) Find the instantaneous rate of change of V with respect to
when r = 5 pm. -

(c) Show that the rate of change of the volume of a sphere wit ]
respect to its radius is equal to its surface area. Explain d
geometrically why this result is true. Argue by analogy with -
Exercise 13(c).

17. The mass of the part of a metal rod that lies between its left
end and a point x meters to the right is 3x” kg. Find the linear
density (see Example 2) when x is (a) 1 m, (b) 2 m, and
(c) 3 m. Where is the density the highest? The lowest?

S

18. If a tank holds 5000 gallons of water, which drains from the
bottom of the tank in 40 minutes, then Torricelli’s Law gives
the volume V of water remaining in the tank after 7 minutes as

t 2
V=5000{1—— 0=<1t=<40
Find the rate at which water is draining from the tank after
(a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min. At what ti
is the water flowing out the fastest? The slowest?
Summarize your findings.

The quantity of charge Q in coulombs (C) that has passed
through a point in a wire up to time ¢ (measured in seconds) i
given by Q(f) = > — 2¢* + 6t + 2. Find the current when
(@)t =0.5sand (b) t = 1s. [See Example 3. The unit of CUIS
rent is an ampere (1 A = 1 C/s).] At what time is the current s
lowest? -

20. Newton’s Law of Gravitation says that the magnitude F of
force exerted by a body of mass m on a body of mass M is

_ GmM
r2




G is the gravitational constant and r is the distance

en the bodies.

Find dF/dr and explain its meaning. What does the minus
sign indicate?

) Suppose it is known that the earth attracts an object with
4 force that decreases at the rate of 2 N/km when

» = 20,000 km. How fast does this force change when
»= 10,000 km?

1e’s Law states that when a sample of gas is compressed
 constant temperature, the product of the pressure and the
ame remains constant: PV = C.

Find the rate of change of volume with respect to
pressure.

' A sample of gas is in a container at low pressure and is
eadily compressed at constant temperature for 10 min-
utes. Is the volume decreasing more rapidly at the begin-
ning or the end of the 10 minutes? Explain.

Prove that the isothermal compressibility (see

Example 5) is given by B = 1/P.

Example 4, one molecule of the product C is formed
om one molecule of the reactant A and one molecule of
reactant B, and the initial concentrations of A and B have
mmon value [A] = [B] = a moles/L, then

[C] = a®kt/(akt + 1)

here k is a constant.
) Find the rate of reaction at time 7.
) Show that if x = [C], then

dx
;= k(a — x)?

table gives the population of the world in the 20th

Population Population
(in millions) Year (in millions)
1650 1960 3040
1750 1970 3710
1860 1980 4450
2070 1990 5280
2300 2000 6080

2560

Estimate the rate of population growth in 1920 and in

‘ 980 by averaging the slopes of two secant lines.

' USe a graphing calculator or computer to find a cubic
inction (a third-degree polynomial) that models the data.
/8¢ your model in part (b) to find a model for the rate of
ulation growth in the 20th century.

’US@ part (c) to estimate the rates of growth in 1920 and
980. Compare with your estimates in part (a).

Estimate the rate of growth in 1985.
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{4 24. The table shows how the average age of first marriage of

Japanese women varied in the last half of the 20th century.

—

t A(D) t A(t)

1950 23.0 1980 25.2
1955 23.8 1985 25.5
.1960 244 1990 25.9
1965 24.5 1995 26.3
1970 242 2000 27.0
1975 24.7

(a) Use a graphing calculator or computer to model these
data with a fourth-degree polynomial.

(b) Use part (a) to find a model for A’ (7).

(c) Estimate the rate of change of marriage age for women
in 1990.

(d) Graph the data points and the models for A and A’.

25. Refer to the law of laminar flow given in Example 7.
Consider a blood vessel with radius 0.01 cm, length 3 cm,
pressure difference 3000 dynes/cm?, and viscosity n = 0.027.
(a) Find the velocity of the blood along the centerline r = 0,

at radius » = 0.005 cm, and at the wall » = R = 0.01 cm.
(b) Find the velocity gradient at » = 0, r = 0.005, and
r=0.01.
(c) Where is the velocity the greatest? Where is the velocity
changing most?

The frequency of vibrations of a vibrating violin string is

given by
1 T
) \/:

where L is the length of the string, T is its tension, and p is

its linear density. [See Chapter 11 in D. E. Hall, Musical

Acoustics, 3d ed. (Pacific Grove, CA: Brooks/Cole, 2002).]

(a) Find the rate of change of the frequency with respect to

(i) the length (when T and p are constant),
(ii) the tension (when L and p are constant), and
(iii) the linear density (when L and T are constant).

(b) The pitch of a note (how high or low the note sounds) is
determined by the frequency f. (The higher the frequency,
the higher the pitch.) Use the signs of the derivatives in
part (a) to determine what happens to the pitch of a note

() when the effective length of a string is decreased by
placing a finger on the string so a shorter portion of
the string vibrates,

(ii) when the tension is increased by turning a tuning
peg,

(iii) when the linear density is increased by switching to
another string.

27. The cost, in dollars, of producing x yards of a certain fabric is
C(x) = 1200 + 12x — 0.1x* + 0.0005x>

(a) Find the marginal cost function.
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(b) Find C’(200) and explain its meaning. What does it
predict?

(c) Compare C'(200) with the cost of manufacturing the
201st yard of fabric.

28. The cost function for production of a commodity is

C(x) = 339 + 25x — 0.09x2 + 0.0004x’

(a) Find and interpret C '(100).
(b) Compare C'(100) with the cost of producing the 101st
item.

[29. If p(x) is the total value of the production when there are
x workers in a plant, then the average productivity of the
workforce at the plant is

p(x)

X

Alx) =

() Find A'(x). Why does the company want to hire more
workers if A'(x) > 0?

(b) Show that A'(x) > 0 if p'(x) is greater than the average
productivity.

30. If R denotes the reaction of the body to some stimulus of
strength x, the sensitivity S is defined to be the rate of change
of the reaction with respect to x. A particular example is that
when the brightness x of a light source is increased, the eye
reacts by decreasing the area R of the pupil. The experimental
formula

40 + 24x*
1+ 4x*

has been used to model the dependence of R on x when R is
measured in square millimeters and x is measured in appro-
priate units of brightness.
(a) Find the sensitivity.
a3 (b) Nlustrate part (a) by graphing both R and § as functions
of x. Comment on the values of R and S at low levels of
brightness. Is this what you would expect?

31. The gas law for an ideal gas at absolute temperature 7' (in
kelvins), pressure P (in atmospheres), and volume V (in

@RELATED RATES

liters) is PV = nRT, where n is the number of moles of tl
gas and R = 0.0821 is the gas constant. Suppose that, at
certain instant, P = 8.0 atm and is increasing at a rate of
0.10 atm/min and V = 10 L and is decreasing at a rate o
0.15 L/min. Find the rate of change of T with respect to
at that instant if n = 10 mol.

32. In a fish farm, a population of fish is introduced into a pc
and harvested regularly. A model for the rate of change ¢
fish population is given by the equation

dP P(1)
dt 3

—=rll- T)P(t) - BP(1)

where ro is the birth rate of the fish, Pe is the maximum

population that the pond can sustain (called the carrying

capacity), and B is the percentage of the population that

harvested.

(a) What value of dP/dt corresponds to a stable populat

(b) If the pond can sustain 10,000 fish, the birth rate is
and the harvesting rate is 4%, find the stable popula
level.

(c) What happens if 8 is raised to 5%?

In the study of ecosystems, predator-prey models are 0
used to study the interaction between species. Considel
populations of tundra wolves, given by W(r), and carib
given by C(1), in northern Canada. The interaction has
modeled by the equations

d
gg=aC—bCW 7‘;V—=—CW+dCW

dt

(a) What values of dC/dt and dW/dt correspond to sta
populations?

(b) How would the statement “The caribou go extinct
represented mathematically?

(c) Suppose thata = 0.05, b = 0.001, ¢ = 0.05, and
d = 0.0001. Find all population pairs (C, W) that
stable populations. According to this model, is it |
for the two species to live in balance or will one ¢
species become extinct?

If we are pumping air into a balloon, both the volume and the radius of the ba
increasing and their rates of increase are related to each other. But it is much
measure directly the rate of increase of the volume than the rate of increase of tl

In a related rates problem the idea is to compute the rate of change of one q
terms of the rate of change of another quantity (which may be more easily measu
procedure is to find an equation that relates the two quantities and then use the C
to differentiate both sides with respect to time.
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K2 EXAMPLE | Air is being pumped into a spherical balloon so that its volume increases

at a rate of 100 cm¥s. How fast is the radius of the balloon increasing when the diameter
is 50 cm?

10 the Principles of Problem Solving  SOLUTION We start by identifying two things:
¢ 54, the first step is to under-

ablem. This includes reading the the given information:

ofully, identifying the given qnd the
roducing suitable notation.

the rate of increase of the volume of air is 100 cm¥/s

and the unknown:
the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive
notation:

Let V be the volume of the balloon and let 7 be its radius.

The key thing to remember is that rates of change are derivatives. In this problem, the
volume and the radius are both functions of the time . The rate of increase of the vol-
ume with respect to time is the derivative dV/dt, and the rate of increase of the radius is
dr/dt. We can therefore restate the given and the unknown as follows:

dv

G ' . i
ven dt

= 100 cm¥/s

Unknown: % when r = 25 cm

ond stage of problem solving is to In order to connect dV/dt and dr/dt, we first relate V and r by the formula for the
jan for connecting the given and the volume of a Sphere:

4
V=3ur

In order to use the given information, we differentiate each side of this equation with
respect to z. To differentiate the right side, we need to use the Chain Rule:

dv  dv dr , dr
S e Han &
i drdt " dr
Now we solve for the unknown quantity:
at, although dV/dr is constant, dr 1 4dv
it constant, & A o

If we put r = 25 and dV/dr = 100 in this equation, we obtain

dr 1 1
L 100 =
dt  4m(25)* 0 251

The radius of the balloon is increasing at the rate of 1/(257) =~ 0.0127 cm/s. O
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EXAMPLE 2 A ladder 10 ft long rests against a vertical wall. If the bottom of the laddey
slides away from the wall at a rate of 1 ft/s, how fast is the top of the ladder sliding
down the wall when the bottom of the ladder is 6 ft from the wall?

SOLUTION We first draw a diagram and label it as in Figure 1. Let x feet be the distance
from the bottom of the ladder to the wall and y feet the distance from the top of the lad. =
der to the ground. Note that x and y are both functions of ¢ (time, measured in seconds), :

We are given that dx/dt = 1 ft/s and we are asked to find dy/dt when x = 6 ft (see
Figure 2). In this problem, the relationship between x and y is given by the Pythagorean
Theorem:

x2 + y2 =100
Differentiating each side with respect to 7 using the Chain Rule, we have

dx dy
2x—+2y—=0
xdr yd

and solving this equation for the desired rate, we obtain

&, A

dt - y dt

When x = 6, the Pythagorean Theorem gives y = 8 and so, substituting these values and
dx/dt = 1, we have

dy 6 3

—=—-—(1)=——ft

gy

The fact that dy/dt is negative means that the distance from the top of the ladder to

the ground is decreasing at a rate of 2 ft/s. In other words, the top of the ladder is sliding
down the wall at a rate of ; ft/s. H

EXAMPLE 3 A water tank has the shape of an inverted circular cone with base radius 2 m
and height 4 m. If water is being pumped into the tank at a rate of 2 m*/min, find the rat
at which the water level is rising when the water is 3 m deep.

SOLUTION We first sketch the cone and label it as in Figure 3. Let V, r, and h be the vol-
ume of the water, the radius of the surface, and the height of the water at time ¢, where {

is measured in minutes. :
We are given that dV/dt = 2 m?/min and we are asked to find dh/dt when h is 3 m.

The quantities V and £ are related by the equation
V= %‘n'rzh

but it is very useful to express V as a function of h alone. In order to eliminate r, we ust
the similar triangles in Figure 3 to write




w

What have we learned from
that will help us solve future

NING A common error is to sub-

en numerical information (for

%at vary with time) too early. This
done only after the differentiation.

h

¥s Step 6.) For instance, in Example
with general values of & until we
ituted 1 = 3 at the last stage. (If

= 3 earlier, we would have got-
0, which is clearly wrong.)
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Now we can differentiate each side with respect to 7:

v _m . dn
dt 4 dt
“ dh_ 4 av
dt wh* dt

Substituting 2 = 3 m and dV/dt = 2 m*/min, we have

dh 4 8

i wGr = om

The water level is rising at a rate of 8/(97) ~ 0.28 m/min. ]

STRATEGY It is useful to recall some of the problem-solving principles from page 54
and adapt them to related rates in light of our experience in Examples 1-3:

I. Read the problem carefully.

2. Draw a diagram if possible.

3. Introduce notation. Assign symbols to all quantities that are functions of time.

4. Express the given information and the required rate in terms of derivatives.
5

- Write an equation that relates the various quantities of the problem. If necessary, use

the geometry of the situation to eliminate one of the variables by substitution (as in
Example 3).

o

Use the Chain Rule to differentiate both sides of the equation with respect to .

7. Substitute the given information into the resulting equation and solve for the
unknown rate.

The following examples are further illustrations of the strategy.

I7 EXAMPLE 4 Car A is traveling west at 50 mi/h and car B is traveling north at
60 mi/h. Both are headed for the intersection of the two roads. At what rate are

the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the
intersection?

SOLUTION We draw Figure 4, where C is the intersection of the roads. At a given time ¢, let
x be the distance from car A to C, let y be the distance from car B to C , and let z be the
distance between the cars, where x, y, and z are measured in miles.

We are given that dx/dt = —50 mi/h and dy/dt = —60 mi/h. (The derivatives are
negative because x and y are decreasing.) We are asked to find dz/dr. The equation that
relates x, y, and z is given by the Pythagorean Theorem:

Z2=x*+y?
Differentiating each side with respect to t, we have
dx dy

Z
g 2 g n, W
T

Py
dt

dz 1 dx+ dy
BT (¥ e T &
dt z dt ydt

2
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When x = 0.3 mi and y = 0.4 mi, the Pythagorean Theorem gives z = 0.5 mi, so

dz 1
7 = 05 [0:3(=50) + 0.4(=60)]

= —78 mi/h

The cars are approaching each other at a rate of 78 mi/h.

i7 EXAMPLE 5 A man walks along a straight path at a speed of 4 ft/s. A searchlight i
located on the ground 20 ft from the path and is kept focused on the man. At what rat,
the searchlight rotating when the man is 15 ft from the point on the path closest to the
searchlight?

! ; SOLUTION We draw Figure 5 and let x be the distance from the man to the point on
i / e the path closest to the searchlight. We let 6 be the angle between the beam of the sear
! b o light and the perpendicular to the path.

i % We are given that dx/dt = 4 ft/s and are asked to find d6/dt when x = 15. The eq
i ,-} %' tion that relates x and 6 can be written from Figure 5:

2 A

‘ == tan 6 = 20tan 6

20 an x

Differentiating each side with respect to 7, we get
FIGURE 5

dx de
— =2 29 —
o 0 sec“6 7

dé 1 d 1 1
s0 ¥ COSZOF); = cos’0 (4) = = cos’6

When x = 15, the length of the beam is 25, so cos § = ‘g‘ and

2
do_1(4y_16 _
dt d \5 125

i The searchlight is rotating at a rate of 0.128 rad/s.

3.8 | EXERCISES

i I. If V is the volume of a cube with edge length x and the cube 3. Each side of a square is increasing at a rate of 6 cm/s. At wh
expands as time passes, find dV/dt in terms of dx/dt. rate is the area of the square increasing when the area of the

§ . 5 : . 1 29
2. (a) If A is the area of a circle with radius r and the circle square is 16 cm®?

expands as time passes, find dA /dt in terms of dr/dt.

(b) Suppose oil spills from a ruptured tanker and spreads in a 4. The length of a rectangle is increasing at a rate of 8 cm/s an}
circular pattern. If the radius of the oil spill increases at a its width is increasing at a rate of 3 cm/s. When the length 1S
constant rate of 1 m/s, how fast is the area of the spill 20 cm and the width is 10 cm, how fast is the area of the rec:

increasing when the radius is 30 m? tangle increasing?




irical tank with radius 5 m is being filled with water
of 3 m*/min. How fast is the height of the water

2 4 y?, dx/dt = 2, and dy/dt = 3, find dz/dt when
fdy = 12.

e moves along the curve y = /1 + x3. As it reaches
(2, 3), the y-coordinate is increasing at a rate of

ow fast is the x-coordinate of the point changing at
t?

antities are given in the problem?

s the unknown?

y picture of the situation for any time 1.
an equation that relates the quantities.
lving the problem.

flying horizontally at an altitude of 1 mi and a speed of
'h passes directly over a radar station. Find the rate at
distance from the plane to the station is increasing

is 2 mi away from the station.

wball melts so that its surface area decreases at a rate of
‘min, find the rate at which the diameter decreases when
ameter is 10 cm.

light is mounted at the top of a 15-ft-tall pole. A man

walks away from the pole with a speed of 5 ft/s along
ight path. How fast is the tip of his shadow moving when
40 ft from the pole?

, ship A is 150 km west of ship B. Ship A is sailing east
/h and ship B is sailing north at 25 km/h. How fast is
nce between the ships changing at 4:00 pm?

CH

tart moving from the same point. One travels south
'h and the other travels west at 25 mi/h. At what rate
nce between the cars increasing two hours later?

ht on the ground shines on a wall 12 m away. If a man

alks from the spotlight toward the building at a speed
» how fast is the length of his shadow on the building
‘when he is 4 m from the building?

$ walking north at 4 ft/s from a point P. Five min-
Woman starts walking south at 5 ft/s from a point
€ast of P. At what rate are the people moving apart
er the woman starts walking?

diamond is a square with side 90 ft. A batter hits the
0s toward first base with a speed of 24 ft/s.

trate is his distance from second base decreasing

€ is halfway to first base?
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(b) At what rate is his distance from third base increasing at
the same moment?

The altitude of a triangle is increasing at a rate of 1 cm/min
while the area of the triangle is increasing at a rate of
2 cm*/min. At what rate is the base of the triangle changing
when the altitude is 10 cm and the area is 100 cm??

20. A boat is pulled into a dock by a rope attached to the bow of
the boat and passing through a pulley on the dock that is 1 m
higher than the bow of the boat. If the rope is pulled in at a rate
of 1 m/s, how fast is the boat approaching the dock when it is
8 m from the dock?

21. At noon, ship A is 100 km west of ship B. Ship A is sailing
south at 35 km/h and ship B is sailing north at 25 km/h. How
fast is the distance between the ships changing at 4:00 pm?

22. A particle is moving along the curve y = /x. As the particle
passes through the point (4, 2), its x-coordinate increases at a
rate of 3 cm/s. How fast is the distance from the particle to the
origin changing at this instant?

23. Water is leaking out of an inverted conical tank at a rate of
10,000 cm*/min at the same time that water is being pumped
into the tank at a constant rate. The tank has height 6 m and the
diameter at the top is 4 m. If the water level is rising at.a rate
of 20 cm/min when the height of the water is 2 m, find the rate
at which water is being pumped into the tank.

24. A trough is 10 ft long and its ends have the shape of isosceles
triangles that are 3 ft across at the top and have a height of 1 ft.
If the trough is being filled with water at a rate of 12 ft’/min,
how fast is the water level rising when the water is 6 inches
deep?

A water trough is 10 m long and a cross-section has the shape
of an isosceles trapezoid that is 30 cm wide at the bottom,
80 cm wide at the top, and has height 50 cm. If the trough is
being filled with water at the rate of 0.2 m*/min, how fast is the
water level rising when the water is 30 cm deep?

26. A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the
shallow end, and 9 ft deep at its deepest point. A cross-section
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is shown in the figure. If the pool is being filled at a rate of
0.8 ft3/min, how fast is the water level rising when the depth at
the deepest point is 5 ft?

Dr—— ! ! |

I T U T B

12 16 6

(27] Gravel is being dumped from a conveyor belt at a rate of

28.

29.

30.

30 ft”/min, and its coarseness is such that it forms a pile in the
shape of a cone whose base diameter and height are always
equal. How fast is the height of the pile increasing when the
pile is 10 ft high?

A kite 100 ft above the ground moves horizontally at a speed
of 8 ft/s. At what rate is the angle between the string and the
horizontal decreasing when 200 ft of string has been let out?

Two sides of a triangle are 4 m and 5 m in length and the angle
between them is increasing at a rate of 0.06 rad/s. Find the rate
at which the area of the triangle is increasing when the angle
between the sides of fixed length is 7/3.

How fast is the angle between the ladder and the ground chang-
ing in Example 2 when the bottom of the ladder is 6 ft from the
wall?

[31] Boyle’s Law states that when a sample of gas is compressed at

32.

33.

a constant temperature, the pressure P and volume V satisfy the
equation PV = C, where C is a constant. Suppose that at a cer-
tain instant the volume is 600 cm®, the pressure is 150 kPa, and
the pressure is increasing at a rate of 20 kPa/min. At what rate

is the volume decreasing at this instant?

When air expands adiabatically (without gaining or losing
heat), its pressure P and volume V are related by the equation
PV'¥ = C, where C is a constant. Suppose that at a certain
instant the volume is 400 cm?® and the pressure is 80 kPa and is
decreasing at a rate of 10 kPa/min. At what rate is the volume
increasing at this instant?

If two resistors with resistances R, and R, are connected in
parallel, as in the figure, then the total resistance R, measured
in ohms (£2), is given by

_:_+_

R R, R,

If R; and R; are increasing at rates of 0.3 (/s and 0
respectively, how fast is R changing when R, = 80
R, =100 Q?

I
[

34. Brain weight B as a function of body weight W in f
been modeled by the power function B = 0.007W?¥
B and W are measured in grams. A model for body
as a function of body length L (measured in centime
W = 0.12L*%. If, over 10 million years, the average
a certain species of fish evolved from 15 c¢m to 20 ¢
stant rate, how fast was this species’ brain growing »
average length was 18 cm?

35. Two sides of a triangle have lengths 12 m and 15 m
between them is increasing at a rate of 2°/min. How
length of the third side increasing when the angle be
sides of fixed length is 60°?

36. Two carts, A and B, are connected by a rope 39 ft Ic
passes over a pulley P (see the figure). The point Q
floor 12 ft directly beneath P and between the carts.
being pulled away from Q at a speed of 2 ft/s. How
B moving toward Q at the instant when cart A is 5 f

P

|

N\

12ft

| \
o A | \\\. Biva
00 ] 00

0

A television camera is positioned 4000 ft from the b
rocket launching pad. The angle of elevation of the ¢
to change at the correct rate in order to keep the rocl
Also, the mechanism for focusing the camera has to
account the increasing distance from the camera to t
rocket. Let’s assume the rocket rises vertically and it
600 ft/s when it has risen 3000 ft.

(a) How fast is the distance from the television came
rocket changing at that moment?

(b) If the television camera is always kept aimed at t
how fast is the camera’s angle of elevation chang
same moment?

38. A lighthouse is located on a small island 3 km away
nearest point P on a straight shoreline and its light
revolutions per minute. How fast is the beam of light
along the shoreline when it is 1 km from P?




16 m above ground level?

d/min. How fast is the plane traveling at that time?

 flying with a constant speed of 300 km/h passes over
radar station at an altitude of 1 km and climbs at an 44. The minute hand on a watch is 8 mm long and the hour hand
30°. At what rate is the distance from the plane to the is 4 mm long. How fast is the distance between the tips of the
ion increasing a minute later? hands changing at one o’clock?

3.9
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» flies horizontally at an altitude of 5 km and passes 42. Two people start from the same point. One walks east at
y over a tracking telescope on the ground. When the 3 mi/h and the other walks northeast at 2 mi/h. How fast is
of elevation is /3, this angle is decreasing at a rate of the distance between the people changing after 15 minutes?

[43.] A runner sprints around a circular track of radius 100 m at

wheel with a radius of 10 m is rotating at a rate of one a constant speed of 7 m/s. The runner’s friend is standing
ion every 2 minutes. How fast is a rider rising when his at a distance 200 m from the center of the track. How fast is

the distance between the friends changing when the distance
between them is 200 m?

LINEAR APPROXIMATIONS AND DIFFERENTIALS

We have seen that a curve lies very close to its tangent line near the point of tangency. In
fact, by zooming in toward a point on the graph of a differentiable function, we noticed
that the graph looks more and more like its tangent line. (See Figure 2 in Section 3.1.) This
observation is the basis for a method of finding approximate values of functions.

The idea is that it might be easy to calculate a value f(a) of a function, but difficult (or
even impossible) to compute nearby values of /. So we settle for the easily computed val-
ues of the linear function L whose graph is the tangent line of f at (a, f(a)). (See Figure 1.)

In other words, we use the tangent line at (a, f(a)) as an approximation to the curve
y = f(x) when x is near a. An equation of this tangent line is

y=f(a) + f'@)(x — a)
and the approximation
[1] fx) = f(a) + f'(a)(x — a)

is called the linear approximation or tangent line approximation of f at a. The linear
function whose graph is this tangent line, that is,

[2] L(x) = f(a) + f'(@)(x — a)

is called the linearization of f at a.

7 EXAMPLE | Find the linearization of the function f(x) = \/x + 3 at @ = 1 and use it

to approximate the numbers 1/3.98 and /4.05. Are these approximations overestimates
or underestimates?

SOLUTION The derivative of f(x) = (x + 3)"2is

1

2+/x+ 3

and so we have f(1) = 2 and f'(1) = ;. Putting these values into Equation 2, we see that
the linearization is

F@) =40 +3)7 =

u»=ﬂn+fmu—n=z+ay-n=;+§
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The corresponding linear approximation (1) is

7
x -+ 3 ~Z+ (when x is near 1)

A
4
In particular, we have

y 398 ~7+°%¢=1995 and 405 ~I+ 15 =20125

7. x ‘
ySaty / The linear approximation is illustrated in Figure 2. We see that, indeed, the tangent

\/ L2)  y=\x+3 line approximation is a good approximation to the given function when x is near 1. We
also see that our approximations are overestimates because the tangent line lies above

-3 U X curve.

Of course, a calculator could give us approximations for 1/3.98 and +/ 4.05, but the

FIGURE 2 linear approximation gives an approximation over an entire interval.

In the following table we compare the estimates from the linear approximation |
Example 1 with the true values. Notice from this table, and also from Figure 2, that the ta
gent line approximation gives good estimates when x is close to 1 but the accuracy of
approximation deteriorates when x is farther away from 1.

’7 X From L(x) Actual value
V39 0.9 1.975 1.97484176 . ..
V398 0.98 1.995 1.99499373 . . .
NS | 2 2.00000000 . . .
V4.05 1.05 2.0125 2.01246117 . ..
N/SE 1.1 2.025 2.02484567 . ..
NG 2 2.25 2.23606797 . . .
J6 3 2.5 2.44948974 . . .

How good is the approximation that we obtained in Example 17 The next exampl
shows that by using a graphing calculator or computer we can determine an interval throug
out which a linear approximation provides a specified accuracy. ;

EXAMPLE 2 For what values of x is the linear approximation

accurate to within 0.5? What about accuracy to within 0.1?

SOLUTION Accuracy to within 0.5 means that the functions should differ by less than 0.5

< 0.5

-

4

Equivalently, we could write

7
\/x+3—0.5<z+%<,/x+3 + 0.5




, =Jx+3-01

5 4

0, we can divide both sides of

Seen similar equations before, but now

€ Can genuinely be interpreted as a
erentials.
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This says that the linear approximation should lie between the curves obtained by shift-
ing the curve y = \/x + 3 upward and downward by an amount 0.5. Figure 3 shows
the tangent line y = (7 + x)/4 intersecting the upper curve y = v/x + 3 + 0.5 at P
and Q. Zooming in and using the cursor, we estimate that the x-coordinate of P is about
—2.66 and the x-coordinate of Q is about 8.66. Thus we see from the graph that the
approximation
e PR

TTIEYTY

is accurate to within 0.5 when —2.6 < x < 8.6. (We have rounded to be safe.)

Similarly, from Figure 4 we see that the approximation is accurate to within 0.1 when
—1.1 <2 < 319 O

APPLICATIONS TO PHYSICS

Linear approximations are often used in physics. In analyzing the consequences of an
equation, a physicist sometimes needs to simplify a function by replacing it with its linear
approximation. For instance, in deriving a formula for the period of a pendulum, physics
textbooks obtain the expression ar = —g sin  for tangential acceleration and then replace
sin 6 by 6 with the remark that sin 6 is very close to 6 if  is not too large. [See, for exam-
ple, Physics: Calculus, 2d ed., by Eugene Hecht (Pacific Grove, CA: Brooks/Cole, 2000),
p. 431.] You can verify that the linearization of the function f(x) = sinx at @ = 0 is
L(x) = x and so the linear approximation at 0 is

sin x = x

(see Exercise 40). So, in effect, the derivation of the formula for the period of a pendulum
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,
both sin 6 and cos 6 are replaced by their linearizations. In other words, the linear approx-
imations

sin 6 =~ 6 and cos § =1

are used because 6 is close to 0. The results of calculations made with these approxi-
mations became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by
Eugene Hecht (San Francisco: Addison-Wesley, 2002), p. 154.]

In Section 12.11 we will present several other applications of the idea of linear approx-
imations to physics.

DIFFERENTIALS

The ideas behind linear approximations are sometimes formulated in the terminology and
notation of differentials. If y = f(x), where f is a differentiable function, then the differ-
ential dx is an independent variable; that is, dx can be given the value of any real number.
The differential dy is then defined in terms of dx by the equation

(3] dy = f'(x) dx

So dy is a dependent variable; it depends on the values of x and dx. If dx is given a spe-
cific value and x is taken to be some specific number in the domain of f, then the numer-
ical value of dy is determined.
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FIGURE 5

w Figure 6 shows the function in Example 3 and
a comparison of dy and Ay when a = 2.The
viewing rectangle is [1.8, 2.5] by [6, 18].

FIGURE 6

The geometric meaning of differentials is shown in Figure 5. Let P(x,)
O(x + Ax, f(x + Ax)) be points on the graph of f and let dx = Ax. The corre
change in y is

Ay = f(x + Ax) = f(x)

The slope of the tangent line PR is the derivative f'(x). Thus the directed distan
to Ris f'(x) dx = dy. Therefore dy represents the amount that the tangent line ris
(the change in the linearization), whereas Ay represents the amount that the curve
rises or falls when x changes by an amount dx.

EXAMPLE 3 Compare the values of Ay and dy if y = f(x) = B4+ xr-2x+1
x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION
(a) We have
fQ=22+22-20+1=9
f(2.05) = (2.05)3 + (2.05)2 —2(2.05) +1= 9.717625
Ay = £(2.05) — f(2) = 0.717625
In general, dy = f'(x)dx = (3x2 + 2x — 2)dx

When x = 2 and dx = Ax = 0.05, this becomes
dy =[3(2) + 2(2) — 2]0.05 = 0.7
(b) F201) = (2.01)* + (2.01)* — 2(2.01) + 1 = 9.140701
Ay = f(2.01) — f(2) = 0.140701
When dx = Ax = 0.01,
dy = 327 + 2(2) — 2]0.01 = 0.14

Notice that the approximation Ay = dy becomes better as Ax becomes
Example 3. Notice also that dy was easier to compute than Ay. For more compl
tions it may be impossible to compute Ay exactly. In such cases the approxim
ferentials is especially useful.

In the notation of differentials, the linear approximation (1) can be written

fla + dx) = f(a) + dy
For instance, for the function f(x)=vx+3 in Example 1, we have

dy = f'x)d ay
g = X X= 7T
y 2+ x +3

Ifa=1anddx=Ax= 0.05, then

dy = e - 0.0125
Y=or+v3
and J4.05 = f(1.05) = f(1) + dy = 2.0125

just as we found in Example 1.
Our final example illustrates the use of differentials in estimating the ert
because of approximate measurements.

©




EXERCISES

Find the linearization L(x) of the function at a.

f(x)=x“+3x2, a=—1 2. f)=1/\2+x, a=0

() = cosx, a= /2 4 f(x) =x¥ 4=16

nd the linear approximation of the function f(x) = /1T — x
@ = 0and use it to approximate the numbers /0.9 and
0.99. Mlustrate by graphing f and the tangent line.

d the linear approximation of the function gx) =1 + x
@ = 0 and use it to approximate the numbers 3/0.95 and
1.1. Nlustrate by graphing g and the tangent line.

Vedfy the given linear approximation at g =

0. Then deter-
1€ values of x for which the

linear approximation is accu-

8 tanx ~ x

10. 1/y/4 —x ~] + Ly

Find the differentia] of each function.

¥ = x?sin 2x ®) y=1+¢
Y=s/(1 + 2s) (b) y=ucosu

SOLUTION If the radius of the s
measured value of r is denot
lated value of V is AV, whic

The maximum error in the calculated volume is about 277 cm’,

Although the possible error in

ter picture of the error is given by the rel
error by the total volume:

expressed as percentage err

B

SECTION 3.9 LINEAR APPROXIMATIONS AND DIFFERENTIALS

il

phere is 7, then its volume is V = sar>. If the error in the
ed by dr = Ar, then the corresponding error in the calcy-
h can be approximated by the differential

dV = 47124y

When r = 21 and ¢r = 0.05, this becomes

dV = 47(21)%0.05 ~ 277

O

Example 4 may appear to be rather large, a bet-
ative error, which is computed by dividing the

or of about 0.007 in the volume. The e
ors of 0.24% in the radius and 0.7% in th

0.05/21 =~ 0.0024
1rors could also be
€ volume.

(3] @) y =

u+1
=

®) y=(Q1+r})2

14. (a) y = (¢ + tan 1)° ® y=vz+1/;
- -

15-18 (a) Find the differential dy
given values of x and dx.

I5. y = /4 + 54, x=0, dx=004

16. y=1/(x+1), x=1, dxr=—00]

and (b) evaluate dy for the

17. y = tanx, x=x/4, dx= —(.]

18. y=cosx, x=m/3, ax= 0.05

e

19-22 Compute Ay and dy for the given values of x and

dx = Ax. Then sketch a diagram like Figure 5 showing the line
segments with lengths dx, dy, and Ay.

19. y=2x-x% x=2, Ax=-04
20 y=\x, x=1, Arx=1
2l. y=2/x, x=4, Ax =1

22.y=x x=1, Ax =05
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23-28 Use a linear approximation (or differentials) to estimate the
given number.

23. (2.001)° 24. sin 1° 25. (8.06)%°
26. 1/1002 27. tan 44° 28. 1/99.8

29-30 Explain, in terms of linear approximations or differentials,
why the approximation is reasonable.

[29. sec 0.08 = 1 30. (1.01)° = 1.06

[31.] The edge of a cube was found to be 30 cm with a possible
error in measurement of 0.1 cm. Use differentials to estimate
the maximum possible error, relative error, and percentage
error in computing (a) the volume of the cube and (b) the sur-
face area of the cube.

32. The radius of a circular disk is given as 24 cm with a maxi-

mum error in measurement of 0.2 cm.

(a) Use differentials to estimate the maximum error in the
calculated area of the disk.

(b) What is the relative error? What is the percentage error?

33. The circumference of a sphere was measured to be 84 cm

with a possible error of 0.5 cm.

(a) Use differentials to estimate the maximum error in the
calculated surface area. What is the relative error?

(b) Use differentials to estimate the maximum error in the

calculated volume. What is the relative error?

34. Use differentials to estimate the amount of paint needed to
apply a coat of paint 0.05 cm thick to a hemispherical dome

with diameter 50 m.

35, (a) Use differentials to find a formula for the approximate
volume of a thin cylindrical shell with height h, inner
radius r, and thickness Ar.

(b) What is the error involved in using the formula from

part (a)?

36. One side of a right triangle is known to be 20 cm long and

the opposite angle is measured as 30°, with a possible error

of +1°.

(a) Use differentials to estimate the error in computing the
length of the hypotenuse.

(b) What is the percentage error?

37. If a current / passes through a resistor with resistance R,
Ohm’s Law states that the voltage drop is V = RILIfVis
constant and R is measured with a certain error, use differen-
tials to show that the relative error in calculating I is approxi-

mately the same (in magnitude) as the relative error in R.

38 When blood flows along a blood vessel, the flux F (the
volume of blood per unit time that flows past a given point)
is proportional to the fourth power of the radius R of the blood
vessel:
F = kR*

as

(This is known as Poiseuille’s Law; we will show why it
is true in Section 9.4.) A partially clogged artery can be
expanded by an operation called angioplasty, in which a
balloon-tipped catheter is inflated inside the artery in order
to widen it and restore the normal blood flow.

Show that the relative change in F is about four times the
relative change in R. How will a 5% increase in the radiug
affect the flow of blood?

39. Establish the following rules for working with differentials
(where ¢ denotes a constant and u and v are functions of x)
(a) dc =0 (b) d(cu) = cdu

(c) du +v)=du+ dv (d) duv) = udv + vdu

—ud
(e)d<_:_>=vduvzu v

On page 431 of Physics: Calculus, 2d ed., by Eugene Hecht :
(Pacific Grove, CA: Brooks/Cole, 2000), in the course of
deriving the formula 7' = 27r\/l7g_ for the period of a
pendulum of length L, the author obtains the equation

ar = —gsin @ for the tangential acceleration of the bob

of the pendulum. He then says, “for small angles, the value
of 6 in radians is very nearly the value of sin 0; they differ
by less than 2% out to about 20°7

(a) Verify the linear approximation at 0 for the sine function;

(f) d(x") = nx"""dx

40.

sin x = x

(b) Use a graphing device to determine the values of x for
which sin x and x differ by less than 2%. Then verify
Hecht's statement by converting from radians to degrees.

[41.) Suppose that the only information we have about a function f
is that f(1) = S and the graph of its derivative is as shown.
(a) Use a linear approximation to estimate £(0.9) and f(1.1). -
(b) Are your estimates in part (a) too large or too small?
Explain.

42. Suppose that we don’t have a formula for g(x) but we know

that
g(2) = -4 and g(x)=+/x>+5
for all x. :
(a) Use a linear approximation to estimate g(1.95)
and g(2.05).

(b) Are your estimates in part (a) too large or t00 small?
Explain.
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The tangent line approximation L(x) is the best first-degree (linear) approximation to f(x) near
x = a because f(x) and L(x) have the same rate of change (derivative) at a. For a better approxi-
mation than a linear one, let’s try a second-degree (quadratic) approximation P(x). In other
words, we approximate a curve by a parabola instead of by a straight line. To make sure that the
approximation is a good one, we stipulate the following:

1) P(a) = f(a) (P and f should have the same value at a.)
(i) P'(a) = f'(a) (P and f should have the same rate of change at a.)
(iii) P"(a) = f"(a) (The slopes of P and f should change at the same rate at a.)
I. Find the quadratic approximation P(x) = A + Bx + Cx? to the function f(x) = cos x that

satisfies conditions (i), (ii), and (iii) with a = 0. Graph P, f, and the linear approximation
L(x) = 1 on a common screen. Comment on how well the functions P and L approximate f.

2. Determine the values of x for which the quadratic approximation f(x) = P(x) in Problem 1
is accurate to within 0.1. [Hinz: Graph y = P(x),y = cos x — 0.1, and y = cos x + 0.1 on
a common screen. ]

3. To approximate a function f by a quadratic function P near a number q, it is best to write P
in the form
P(x) =A + B(x — a) + C(x — a)?

Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is
P(x) = f(a) + f(@)(x — a) + 5 f"(@)(x — a)?

4. Find the quadratic approximation to f(x) = v/x + 3 near @ = 1. Graph f, the quadratic
approximation, and the linear approximation from Example 2 in Section 3.9 on a common
screen. What do you conclude?

5. Instead of being satisfied with a linear or quadratic approximation to f(x) near x = a, let’s
try to find better approximations with higher-degree polynomials. We look for an nth-degree
polynomial

T(x)=cotcalx—a)+ax—al+eaEx—aP+- -+ cxlx=a)

such that 7, and its first n derivatives have the same values at x = g as f and its first n
derivatives. By differentiating repeatedly and setting x = a, show that these conditions are
satisfied if co = f(a), ¢, = f'(a), ¢, = 1 f"(a), and in general

i)
)
where k! =1:2-3-4. .- -k The resulting polynomial

" (n)
1@ =@ + @ -+ L —ap s+ LD gy

is called the nth-degree Taylor polynomial of f centered at a.

6. Find the 8th-degree Taylor polynomial centered at a = 0 for the function f(x) = cos x.
Graph f together with the Taylor polynomials T, T}, T, Ts in the viewing rectangle [—5, 5]
by [—1.4, 1.4] and comment on how well they approximate f.
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CONCEPT CHECK

1. Write an expression for the slope of the tangent line to the
curve y = f(x) at the point (a, f(a)).

2. Suppose an object moves along a straight line with position
f(z) at time . Write an expression for the instantaneous veloc-
ity of the object at time ¢ = a. How can you interpret this
velocity in terms of the graph of f'?

3. If y = f(x) and x changes from x; to x,, write expressions for
the following.
(a) The average rate of change of y with respect to x over the
interval [x;, x2].
(b) The instantaneous rate of change of y with respect to x
atx = xi.

4. Define the derivative f'(a). Discuss two ways of interpreting
this number.

5. (a) What does it mean for f to be differentiable at a?
(b) What is the relation between the differentiability and conti-
nuity of a function?
(c) Sketch the graph of a function that is continuous but not
differentiable at a = 2.

. Describe several ways in which a function can fail to be
differentiable. Illustrate with sketches.

. What are the second and third derivatives of a function f?
If fis the position function of an object, how can you inter-
pret f” and f"?

. State each differentiation rule both in symbols and in words,

(b) The Constant Multiple Rule

(d) The Difference Rule

(f) The Quotient Rule

(a) The Power Rule
(c) The Sum Rule
(e) The Product Rule
(g) The Chain Rule

. State the derivative of each function.
(c) y=-cosx

(e) y=cscx (f) y=-secx

. Explain how implicit differentiation works.

. (a) Write an expression for the linearization of f at a.
(b) If y = f(x), write an expression for the differential dy.
(c) If dx = Ax, draw a picture showing the geometric mean-
ings of Ay and dy.

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If f is continuous at a, then f is differentiable at a.

2. If f and g are differentiable, then

d
E[f(x) + 9] =f'x) + g
3. If f and g are differentiable, then

L (990 = F W)
X
4. If f and g are differentiable, then
L[ /(g = F (4 g @)
X
f'x)

d
5. If f is differentiable, then o f(x) = ;
x

T 2Vf®

J .

. 1If f is differentiable, then —— flafx) ==
X

|x?+ x| =|2x + 1]

. If f'(r) exists, then lirp fx) = f(.

. If g(x) = x°, then lin}

. An equation of the tangent line to the parabola y = S
at(=2,4)isy — 4 = 2x(x + 2).
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cement (in meters) of an object moving in a straight
enby s =1+2t+ it%, where 7 is measured in

4 the average velocity over each time period.
' (i) [1,2]
Gv) [1,1.1]

e instantaneous velocity when ¢ = 1.

 of f is shown. State, with reasons, the numbers at
s not differentiable.

¥

m copy the graph of the function. Then sketch a graph
ive directly beneath.

re shows the graphs of f, f', and f". Identify each
nd explain your choices.

ction f and a number a such that

. 2+n5-64
lim ———
h—0 h

= f'(a)

0t of repaying a student loan at an interest rate of
ar is C = (r)
s the meaning of the derivative f'(+)? What are its

oes the statement £'(10) = 1200 mean?
always positive or does it change sign?

8. The total fertility rate at time t, denoted by F(z), is an esti-
mate of the average number of children born to each woman
(assuming that current birth rates remain constant). The graph
of the total fertility rate in the United States shows the fluctua-
tions from 1940 to 1990.

(a) Estimate the values of F'(1950), F'(1965), and F'(1987).

(b) What are the meanings of these derivatives?

(c) Can you suggest reasons for the values of these
derivatives?

i

bab
3.5+ Y

boom

3.0

2571

p. |
t

1940 1950 1960 1970 1980 1990 !

9. Let C(z) be the total value of US currency (coins and bank-
notes) in circulation at time 7. The table gives values of this

function from 1980 to 2000, as of September 30, in billions of
dollars. Interpret and estimate the value of C'(1990).

t 1980 | 1985 | 1990 | 1995 | 2000

C(1) 129.9 | 187.3 | 271.9 | 409.3 | 568.6

10-11 Find f'(x) from first principles, that is, directly from the
definition of a derivative.
4—x
3+x

10. f(x) = I f(x) =x*+5x+ 4

12. (a) If f(x) = +/3 — 5x, use the definition of a derivative to
find f'(x).
(b) Find the domains of f and f".
(c) Graph f and f’ on a common screen. Compare the graphs
to see whether your answer to part (a) is reasonable.

13-40 Calculate y'.
13. y=(x* = 3x* + 5)} 14, y = cos(tan x)
3x— 2

W= et

1\
8. 3 =%t —
X

> 20. y = sin(cos x)

1
IS.y=\/;+W

17. y = 2xy/x2 + 1

19, y=
-
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1

2l. y =t = 2, y=—"—
) al * 4 sin(x — sin x)
23. xy* + x%y =x + 3y 24. y = sec(l + x?)
25 . el 26. x*cosy + sin2
Ly = e X i =x
>~ 1T+ tan26 : AR
27. y=(1—-x1"! 28. y = 1/3x + /x
29. sin(xy) = x* — y 30. y = +/sin/x
(x + A)*
Ly= 24 2, y=—"— 1"
31. y = cot(3x 5) 32. y T
33. y = /x cos V/x 34, y = 20X
x
35. y = tan’(sin ) 36. xtany =7y — 1
x—=1)(x-4
7. y=3/xt 38. y=—""""—
37. y X tan x y x=2)(x=3)
39. y = sin(tan /T + x7 ) 40. y = sin’(cos+/sin 7rx )
a1, Iff(1) = /a1 + 1, find f"(2).
42. If g(6) = Osin 6, find g"(7/6).

i 43
44

. Find y" if x® + y= 1.
. Find f2(x) if £(x) = 1/(2 — x).

{ 45-46 Find the limit.

45. lim

47. y = 4 sin’x,

S€C x .

46. 1i
,T(} tan’ 2¢

x—0 1 — sin x

47-48 Find an equation of the tangent to the curve at the given
point.

Xz =
(77/6, l) 48. y=x2— (0,—1)

+1’

cu

Fel

D]
1<)

.

49.
50.

51.

52,

49-50 Find equations of the tangent line and normal line to the

rve at the given point.

y=4+1+4sinx, (0,1)

X+ dxy +yr =13, (2, 1)

(a) Iff(x) =x+/5— x, find f'(x).

(b) Find equations of the tangent lines to the curve
Yy = x+/5 — x at the points (1, 2) and (4, 4).

(c) Mlustrate part (b) by graphing the curve and tangent lines
on the same screen.

(d) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f’.

(@) If f(x) =4x — tan x, —7/2 < x < /2, find f and f".

(b) Check to see that your answers to part (a) are reasonable
by comparing the graphs of £, f', and f".

53. At what points on the curve y = sin x + cos x, 0 < x <
is the tangent line horizontal?

2
54. Find the points on the ellipse x> + 2y? = 1 where the tang

line has slope 1.

55. Find a parabola y = ax? + bx + c that passes through the
point (1, 4) and whose tangent lines at x = —1 and x = 5
have slopes 6 and —2, respectively.

56. How many tangent lines to the curve y = x/(x + 1) pass
through the point (1, 2)? At which points do these tangent
lines touch the curve?

57. If f(x) = (x — a)(x — b)(x — ¢), show that

SO 1 1
f(x) x—a x=b

X=
58. (a) By differentiating the double-angle formula

cos 2x = cos*x — sin’x
obtain the double-angle formula for the sine function.
(b) By differentiating the addition formula
sin(x + a) = sin x cos a + cos x sina
obtain the addition formula for the cosine function.

59. Suppose that h(x) = f(x) g(x) and F(x) = f(g(x)), where
f2)=3,4(2)=5,42) = 4, f(2) = =2, and f'(5) = 1
Find (a) #'(2) and (b) F'(2).

60. If f and g are the functions whose graphs are shown, let

P(x) = f(x) g(x), Q(x) = f(x)/g(x), and C(x) = f(g(x)).
Find (a) P'(2), (b) Q'(2), and (c) C'(2).

I’ /1]

i

61-68 Find f' in terms of ¢'.
61. f(x) = x%g(x)

63. f(x) = [g(x)]

65. f(x) = g(g(x))

67. f(x) = g(sinx)

62. f(x) = g(x?)

64. f(x) = x°g(x")
66. f(x) = sin(g(x))
68. f(x) = g(tan v/x)

69-71 Find 4’ in terms of f'andg'.

_ ) _ @
69. h(x) = 70 + 909 70. h(x) 40

0. h(x) = f(g(sin 4x))




icle moves along a horizontal line so that its coordinate

Eme 1isx = Vb + c?t?,t = 0, where b and c are

e constants.
nd the velocity and acceleration functions.

how that the particle always moves in the positive

g'ma,ction‘

icle moves on a vertical line so that its coordinate at

yisy =1 — 12t +3,1=0.

nd the velocity and acceleration functions.

hen is the particle moving upward and when is it

moving downward?

ﬁﬂd the distance that the particle travels in the time
terval 0 < 1< 3.

aph the position, velocity, and acceleration functions

0<t=<3.

en is the particle speeding up? When is it slowing

é)wn?

volume of a right circular cone is V = 7rr’h/3, where

the radius of the base and 4 is the height.

Find the rate of change of the volume with respect to the
eight if the radius is constant.

Find the rate of change of the volume with respect to the

radius if the height is constant.

e mass of part of a wire is x(1 + v/x ) kilograms, where
s measured in meters from one end of the wire. Find the
density of the wire when x = 4 m.

e cost, in dollars, of producing x units of a certain com-
lty is
C(x) = 920 + 2x — 0.02x> + 0.00007x"

‘Find the marginal cost function.

Find C'(100) and explain its meaning.

Compare C’(100) with the cost of producing the 101st
item.

e volume of a cube is increasing at a rate of 10 cm?/min.
ow fast is the surface area increasing when the length of an
e is 30 cm?

g"pa\per cup has the shape of a cone with height 10 cm and
15 3 cm (at the top). If water is poured into the cup at a
of 2 cm®/s, how fast is the water level rising when the
1 is 5 cm deep?

alloon is rising at a constant speed of 5 ft/s. A boy is
ing along a straight road at a speed of 15 ft/s. When he
under the balloon, it is 45 ft above him. How fast is
distance between the boy and the balloon increasing
later?

erskier skis over the ramp shown in the figure at a

d of 30 ft/s. How fast is she rising as she leaves the
p?

A4

|
K
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CHAPTER 3 REVIEW

e

81. The angle of elevation of the sun is decreasing at a rate of
0.25 rad/h. How fast is the shadow cast by a 400-ft-tall
building increasing when the angle of elevation of the sun

is /67

(a) Find the linear approximation to f(x) = /25 — x?
near 3.

(b) Illustrate part (a) by graphing f and the linear
approximation.

(c) For what values of x is the linear approximation accurate
to within 0.17

(a) Find the linearization of f(x) = 4/1 + 3x ata = 0. State
the corresponding linear approximation and use it to give
an approximate value for +/1.03.

(b) Determine the values of x for which the linear approxima-
tion given in part (a) is accurate to within 0.1.

82.

83.

84. Bvaluate dyif y=x* —2x*+ 1,x=2,anddx = 0.2.

A window has the shape of a square surmounted by a semi-
circle. The base of the window is measured as having width
60 cm with a possible error in measurement of 0.1 cm. Use
differentials to estimate the maximum error possible in com-
puting the area of the window.

85.

86-88 Express the limit as a derivative and evaluate.

7 -1 Y16+ h —2
86. lim > 87. lim¥Y——— =
=1 x =1 h—0 h
88, cos 6§ — 0.5

oy 0 — /3

J1+tanx — /1 +sinx

89. Evaluate lim =
x—0 X
90. Suppose f is a differentiable function such that f(g(x)) = x
and f'(x) = 1 + [f(x)]% Show that g'(x) = 1/(1 + x?).
91. Find f'(x) if it is known that

2 [fG0) =

Show that the length of the portion of any tangent line to the
astroid x¥* + y** = a** cut off by the coordinate axes is
constant.

92.



JPROBLEMS PLUS———————————

Before you look at the example, cover up the solution and try it yourself first.

EXAMPLE | How many lines are tangent to both of the parabolas y = —1 — x? gpg
y = 1 + x?? Find the coordinates of the points at which these tangents touch the
parabolas.

SOLUTION To gain insight into this problem, it is essential to draw a diagram. So we ske
the parabolas y = 1 + x? (which is the standard parabola y = x? shifted 1 unit upwar,
P and y = —1 — x* (which is obtained by reflecting the first parabola about the x-axis)
1 we try to draw a line tangent to both parabolas, we soon discover that there are only ¢
possibilities, as illustrated in Figure 1.
Let P be a point at which one of these tangents touches the upper parabola and Jet
% be its x-coordinate. (The choice of notation for the unknown is important. Of course w
could have used b or ¢ or x, or x; instead of a. However, it’s not advisable to use x in
=1 place of a because that x could be confused with the variable x in the equation of the
Q parabola.) Then, since P lies on the parabola y = 1 + x?, its y-coordinate must be 1 + ¢
Because of the symmetry shown in Figure 1, the coordinates of the point Q where the
tangent touches the lower parabola must be (—a, —(1 + a?)).
FIGURE | To use the given information that the line is a tangent, we equate the slope of the ling
PQ to the slope of the tangent line at P. We have

If f(x) = 1 + x?, then the slope of the tangent line at P is f'(a) = 2a. Thus the condi
tion that we need to use is that

1 + a?
a

= 2a

Solving this equation, we get 1 + a® = 2a? so a®> = 1 and a = *1. Therefore the
points are (1, 2) and (—1, —2). By symmetry, the two remaining points are (—1, 2)
and (1, —2).

S —_— '; ROBLEMS R
I. Find points P and Q on the parabola y = 1 — x? so that the triangle ABC formed by the x-
and the tangent lines at P and Q is an equilateral triangle.
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—PROBLEMS PLUS —

%

. Find the point where the curves y = x> — 3x + 4 and y = 3(x? — x) are tangent to each
other, that is, have a common tangent line. Illustrate by sketching both curves and the
common tangent.

3. Show that the tangent lines to the parabola y = ax? + bx + c at any two points with
x-coordinates p and g must intersect at a point whose x-coordinate is halfway between p
and gq.

4. Show that

d sin’x cosx
—_ + = —Cos 2x
dx\1+ cotx 1 + tanx

w1

. Suppose f is a function that satisfies the equation

flx+3) =7 +f(y) + x*y + xy*

for all real numbers x and y. Suppose also that

AL .

x—=0 X

1

(a) Find £(0). (b) Find £1(0). (c) Find f(x).

v 6. A caris traveling at night along a highway shaped like a parabola with its vertex at the origin
(see the figure). The car starts at a point 100 m west and 100 m north of the origin and travels
in an easterly direction. There is a statue located 100 m east and 50 m north of the origin. At
what point on the highway will the car’s headlights illuminate the statue?

~

d”
& . Prove that e (sin*x + cos*x) = 4""! cos(4x + nm/2).
X

8. Find the nth derivative of the function f(x) = x"/(1 — x).

5

FOR PROBLEM 6 9. The figure shows a circle with radius 1 inscribed in the parabola y = x2 Find the center of the

circle.

10. If f is differentiable at a, where a > 0, evaluate the following limit in terms of £'(a):

i L0 = 1@
x—a :;x . \/a_
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“IPROBLEMS PLUS———————————————

y 1. The figure shows a rotating wheel with radius 40 cm and a connecting rod AP with length
1.2 m. The pin P slides back and forth along the x-axis as the wheel rotates counterclockwige
SOS A at a rate of 360 revolutions per minute.
(a) Find the angular velocity of the connecting rod, de/dt, in radians per second,
5 when 6 = /3.
o

(b) Express the distance x = | OP | in terms of 6.
(c) Find an expression for the velocity of the pin P in terms of 6.

12. Tangent lines 7; and T are drawn at two points P; and P, on the parabola y = x2 and they
intersect at a point P. Another tangent line 7 is drawn at a point between P, and P,; it
intersects T; at O, and T at Q,. Show that

FIGURE FOR PROBLEM 11

Po.| |, 1PO:] _
| PP, | | PP, |
13. Let 7 and N be the tangent and normal lines to the ellipse x?/9 + y*/4 = 1 at any point p on
the ellipse in the first quadrant. Let x7 and yr be the x- and y-intercepts of T and x, and yx be
the intercepts of N. As P moves along the ellipse in the first quadrant (but not on the axes),
what values can xr, yr, xv, and yy take on? First try to guess the answers just by looking at the:
figure. Then use calculus to solve the problem and see how good your intuition is.

in(3 + x)* — sin 9
14. Evaluate lirr(l) i *) 2 s
x> X

I5. (a) Use the identity for tan (x — y) (see Equation 14b in Appendix D) to show that if two
lines L; and L, intersect at an angle a, then '

m; — m
ano=————
1+m1mz

where m, and m; are the slopes of L, and L,, respectively.

(b) The angle between the curves C, and C; at a point of intersection P is defined to be th
angle between the tangent lines to C; and C, at P (if these tangent lines exist). Use part
to find, correct to the nearest degree, the angle between each pair of curves at each poin
of intersection.

(i) y==x* and y= (x — 2)?
() x> =y*=3 and x*—4x+y?+3=0

16. Let P(x;, y1) be a point on the parabola y? = 4px with focus F(p, 0). Let « be the angle
between the parabola and the line segment FP, and let 8 be the angle between the horizontal®
line y = y; and the parabola as in the figure. Prove that « = B. (Thus, by a principle of geo
metrical optics, light from a source placed at F will be reflected along a line parallel to the




e ———— ;eao LEMS PLusjj

x-axis. This explains why paraboloids, the surfaces obtained by rotating parabolas about their
axes, are used as the shape of some automobile headlights and mirrors for telescopes.)

B4

y*=4px

17. Suppose that we replace the parabolic mirror of Problem 16 by a spherical mirror. Although
the mirror has no focus, we can show the existence of an approximate focus. In the figure,

: C is a semicircle with center O. A ray of light coming in toward the mirror parallel to the axis
along the line PQ will be reflected to the point R on the axis so that ZPQO = £ OQR (the
angle of incidence is equal to the angle of reflection). What happens to the point R as P is

0 taken closer and closer to the axis?
18. If f and g are differentiable functions with f(0) = g(0) = 0 and g'(0) # 0, show that
i L&) _ £
=0 g(x)  ¢'(0)
FOR PROBLEM 17 . sin(a + 2x) — 2sin(a + x) + sina
19. Evaluate lmg) - \
x— X

20. Given an ellipse x*/a® + y*/b? = 1, where a # b, find the equation of the set of all points
from which there are two tangents to the curve whose slopes are (a) reciprocals and (b) nega-
tive reciprocals.

21. Find the two points on the curve y = x* — 2x? — x that have a common tangent line.

22. Suppose that three points on the parabola y = x? have the property that their normal lines
intersect at a common point. Show that the sum of their x-coordinates is 0.

23. A lattice point in the plane is a point with integer coordinates. Suppose that circles with radius
r are drawn using all lattice points as centers. Find the smallest value of r such that any line
with slope # intersects some of these circles.

24. A cone of radius r centimeters and height 4 centimeters is lowered point first at a rate of
1 ecm/s into a tall cylinder of radius R centimeters that is partially filled with water. How fast is
the water level rising at the instant the cone is completely submerged?

25. A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top. It is
partially filled with a liquid that oozes through the sides at a rate proportional to the area of
the container that is in contact with the liquid. (The surface area of a cone is 77, where r is
the radius and / is the slant height.) If we pour the liquid into the container at a rate of
2 cm’/min, then the height of the liquid decreases at a rate of 0.3 cm/min when the height is
10 cm. If our goal is to keep the liquid at a constant height of 10 cm, at what rate should we
pour the liquid into the container?

26. (a) The cubic function f(x) = x(x — 2)(x — 6) has three distinct zeros: 0, 2, and 6. Graph f
and its tangent lines at the average of each pair of zeros. What do you notice?
(b) Suppose the cubic function f(x) = (x — a)(x — b)(x — c) has three distinct zeros:
a, b, and c. Prove, with the help of a computer algebra system, that a tangent line drawn at
the average of the zeros a and b intersects the graph of f at the third zero.
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