LIMITS

The idea of a limit is
illustrated by secant lines
approaching a tangent line.

w how the idea of a limit underlies the various

In A Preview of Calculus (page 2) we sa
priate to begin our study of calculus by

branches of calculus. It is therefore appro
investigating limits and their properties.
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THE TANGENT AND VELOCITY PROBLEMS
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In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

THE TANGENT PROBLEM

The word tangent is derived from the Latin word tangens, which means “touching.” Thus
a tangent to a curve is a line that touches the curve. In other words, a tangent line should
have the same direction as the curve at the point of contact. How can this idea be made
precise?

For a circle we could simply follow Euclid and say that a tangent is a line that intersects
the circle once and only once as in Figure 1(a). For more complicated curves this defini-
tion is inadequate. Figure 1(b) shows two lines / and ¢ passing through a point P on a curve
C. The line [ intersects C only once, but it certainly does not look like what we think of as
a tangent. The line ¢, on the other hand, looks like a tangent but it intersects C twice.

To be specific, let’s look at the problem of trying to find a tangent line # to the parabola
y = x” in the following example.

W2 EXAMPLE | Find an equation of the tangent line to the parabola y = x* at the
point P(1, 1).

SOLUTION We will be able to find an equation of the tangent line ¢ as soon as we know its
slope m. The difficulty is that we know only one point, P, on ¢, whereas we need two
points to compute the slope. But observe that we can compute an approximation to m by
choosing a nearby point Q(x, x*) on the parabola (as in Figure 2) and computing the
slope mpq of the secant line PQ.

We choose x # 1 so that Q # P. Then

xt—1
x == 1

mpg =

For instance, for the point Q(1.5, 2.25) we have

2.25 — 1 1.25
= 2.5

15—-1 05

mpg =

The tables in the margin show the values of mpq for several values of x close to 1. The
closer Q is to P, the closer x is to 1 and, it appears from the tables, the closer mpg is to 2.
This suggests that the slope of the tangent line ¢ should be m = 2.

We say that the slope of the tangent line is the limit of the slopes of the secant lines,
and we express this symbolically by writing

lim mpp =m  and lim -
o—P el x = ]

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form
of the equation of a line (see Appendix B) to write the equation of the tangent line
through (1, 1) as

y—1=2(x—-1) or y=2x—1
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Figure 3 illustrates the limiting process that occurs in this example. As Q approaches
P along the parabola, the corresponding secant lines rotate about P and approach the
tangent line 7.

YA 0 }’T

X

Q approaches P from the right

\y
0

;
|
2
' )’1 y1 Y
; t t t
.E
i
g 0 P P P
; g Q

0 % 0 x

Q approaches P from the left

FIGURE 3 O
EZEd InVisual 2.1 you can see how the Many functions that occur in science are not described by explicit equations; they are
process in Figure 3 works for additional defined by experimental data. The next example shows how to estimate the slope of the
fincdons: tangent line to the graph of such a function.

7 EXAMPLE 2 The flash unit on a camera operates by storing charge on a capacitor
and releasing it suddenly when the flash is set off. The data in the table describe the
charge Q remaining on the capacitor (measured in microcoulombs) at time ¢ (measured
in seconds after the flash goes off). Use the data to draw the graph of this function and
estimate the slope of the tangent line at the point where t = 0.04. [Note: The slope of
the tangent line represents the electric current flowing from the capacitor to the flash
bulb (measured in microamperes).] ‘

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that approxi-
mates the graph of the function.

08 0.1 t (seconds)

FIGURE 4 0 0.02 0.04 0.06
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Given the points P(0.04, 67.03) and R(0.00, 100.00) on the graph, we find that the
slope of the secant line PR is

100.00 — 67.03
MpR 0.00 — 0.04 824.25
The table at the left shows the results of similar calculations for the slopes of other
R s secant lines. From this table we would expect the slope of the tangent line at # = 0.04 to
{0.00, 100.00) —824.25 lie somewhere between —742 and —607.5. In fact, the average of the slopes of the two
(0.02, 81.87) —742.00 closest secant lines is
(0.06, 54.88) —607.50
(0.08, 44.93) —552.50 1(=742 - 607.5) = —674.75
(0.10, 36.76) ~504.50

So, by this method, we estimate the slope of the tangent line to be —675.

Another method is to draw an approximation to the tangent line at P and measure the
sides of the triangle ABC, as in Figure 4. This gives an estimate of the slope of the tan-
gent line as

& The physical meaning of the answer in

~ Example 2 is that the electric current flowing _ IAB | - _ 804 — 53.6 = —670 0O
from the capacitor to the flash bulb after | BC | 0.06 — 0.02

.04 second is about —670 microamperes.

THE VELOCITY PROBLEM

If you watch the speedometer of a car as you travel in city traffic, you see that the needle
doesn’t stay still for very long; that is, the velocity of the car is not constant. We assume
from watching the speedometer that the car has a definite velocity at each moment, but how
is the “instantaneous” velocity defined? Let’s investigate the example of a falling ball.

I EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN
Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that the
distance fallen by any freely falling body is proportional to the square of the time it has
been falling. (This model for free fall neglects air resistance.) If the distance fallen after
t seconds is denoted by s() and measured in meters, then Galileo’s law is expressed by

the equation

s(t) = 4.9¢*

The difficulty in finding the velocity after 5 s is that we are dealing with a single
instant of time (¢ = 5), so no time interval is involved. However, we can approximate the
desired quantity by computing the average velocity over the brief time interval of a tenth
of a second from¢# = 5to¢t = 5.1:

change in position

average velocity = r Tansed
ime elapse

: The CN Tower in Toronto is currently the
’% freestanding building in the world.

s(5.1) — s(5)
0.1

_49(5.1)* — 49(5)
N 0.1

= 49.49 m/s
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The following table shows the results of similar calculations of the average velocity over
successively smaller time periods.

Time interval Average velocity (m/s)

5st<6 53.9
5=<t=<51 49.49
5<t=<505 49.245
5<t=<501 49.049
5 <t =< 5.001 49.0049

It appears that as we shorten the time period, the average velocity is becoming closer to
49 m/s. The instantaneous velocity when t = 5 is defined to be the limiting value of
these average velocities over shorter and shorter time periods that start at £ = 5. Thus
the (instantaneous) velocity after 5 s is

v =49 m/s O

You may have the feeling that the calculations used in solving this problem are very sim-
ilar to those used earlier in this section to find tangents. In fact, there is a close connec-
tion between the tangent problem and the problem of finding velocities. If we draw the
graph of the distance function of the ball (as in Figure 5) and we consider the points
P(a, 4.9a%) and Q(a + h,4.9(a + h)*) on the graph, then the slope of the secant line

PQ is

49(a + h) — 4.9a*
(@+h) —a

mpQ =

which is the same as the average velocity over the time interval [a, a + h]. Therefore, the
velocity at time ¢ = a (the limit of these average velocities as h approaches 0) must be
equal to the slope of the tangent line at P (the limit of the slopes of the secant lines).

slope of secant line

= average velocity slope of tangent

— instantaneous velocity

FIGURE 5

r Examples 1 and 3 show that in order to solve tangent and velocity problems we must
i be able to find limits. After studying methods for computing limits in the rest of this chap-
ter, we will return to the problems of finding tangents and velocities in Chapter 3.
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EXERCISES
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A tank bolds 1000 gallons of water, which drains from the
‘botto: ottom of the tank in half an hour. The values in the table show
" the volume V of water remaining in the tank (in gallons) after

£ minutes.

15 20 25 30
250 111 28 0

.~ (a) If P is the point (15, 250) on the graph of V, find the slopes
of the secant lines PQ when ( is the point on the graph
with = 5, 10, 20, 25, and 30.

(b) Estimate the slope of the tangent line at P by averaging the
slopes of two secant lines.

(¢) Use a graph of the function to estimate the slope of the
tangent line at P. (This slope represents the rate at which the
water is flowing from the tank after 15 minutes.)

A cardiac monitor is used to measure the heart rate of a patient
after surgery. It compiles the number of heartbeats after min-
utes. When the data in the table are graphed, the slope of the
tangent line represents the heart rate in beats per minute.

44‘

3080 |
| |

# (min) 36 38 40 42
2530 2661 2806 2948

Heartbeats

The monitor estimates this value by calculating the slope

of a secant line. Use the data to estimate the patient’s heart rate
after 42 minutes using the secant line between the points with
the given values of ¢.
(a)r=36 and t=42
(€)t=40 and t=42
What are your conclusions?

t=42
t=44

(b) t=38 and
(d) t=42 and

13 The point P(1, 1) lies on the curve y = x/(1 + x).

(a) If Q is the point (x, x/(1 + x)), use your calculator to find
the slope of the secant line PQ (correct to six decimal
places) for the following values of x:

(@ 05 (i) 0.9 (iii) 0.99 (iv) 0.999
W 15  (vi) 1.1 (vii) 1.01  (viii) 1.001
(b) Using the results of part (a), guess the value of the slope of
: the. tangent line to the curve at P(l, %)

(¢) Using the slope from part (b), find an equation of the

tangent line to the curve at P(l, %)

& The point P(3, 1) lies on the curve y=+x-2.
(a) If Q is the point (x, v = 2), use your calculator to find
the slope of the secant line PQ (correct to six decimal
places) for the following values of x:
@ 25 (i) 29 (iii) 2.99 (iv) 2.999
®) L;\\f) 35 (vi) 3.1 (vii) 3.01 (viii) 3.001
; sing the results of part (a), guess the value of the slope of
the tangent line to the curve at P(3, 1).

(c) Using the slope from part (b), find an equation of the
tangent line to the curve at P(3, 1).
(d) Sketch the curve, two of the secant lines, and the tangent

line.

[5. If a ball is thrown into the air with a velocity of 40 ft/s, its
height in feet ¢ seconds later is given by y = 40t — 161>
(a) Find the average velocity for the time period beginning
when ¢ = 2 and lasting
(i) 0.5 second (ii) 0.1 second
(iii) 0.05 second  (iv) 0.01 second
(b) Estimate the instantaneous velocity when t = 2.

(6. If arock is thrown upward on the planet Mars with a velocity
of 10 m/s, its height in meters 7 seconds later is given by
y = 10t — 1.86¢
(a) Find the average velocity over the given time intervals:
1 [1,2] (i) [1, 1.5] (iii) [1, 1.1]
(iv) [1, 1.01] (v) [1, 1.001]
(b) Estimate the instantaneous velocity when ¢ = 1.

7. The table shows the position of a cyclist.

t (seconds) 0 1 2 3 4 5
10.7 17.7 25.8

s (meters) 0 1.4 5.1

(a) Find the average velocity for each time period:
G 1,31 G [23] b [3,5] @) [3,4]

(b) Use the graph of s as a function of ¢ to estimate the instan-
taneous velocity when ¢ = 3.

8. The displacement (in centimeters) of a particle moving back
and forth along a straight line is given by the equation of
motion s = 2 sin 77t + 3 cos ¢, where ¢ is measured in

seconds.
(a) Find the average velocity during each time period:
@ [1,2] @) [1, 1.1]

(>iii) [1, 1.01] (iv) [1, 1.001]
(b) Estimate the instantaneous velocity of the particle
when t = 1.

[9.] The point P(1, 0) lies on the curve y = sin(107/x).

(a) If Q is the point (x, sin(107/x)), find the slope of the secant
line PQ (correct to four decimal places) for x = 2, 1.5, 1.4,
1.3,1.2,1.1,0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes
appear to be approaching a limit?

2! (b) Use a graph of the curve to explain why the slopes of the

secant lines in part (a) are not close to the slope of the tan-
gent line at P.

(¢) By choosing appropriate secant lines, estimate the slope of
the tangent line at P.



66 |||l CHAPTER 2 LIMITS
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THE LIMIT OF A FUNCTION
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Having seen in the preceding section how limits arise when we want to find the tangen
a curve or the velocity of an object, we now turn our attention to limits in general
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function f defined by f(x) = x* — x + 2 for-
ues of x near 2. The following table gives values of f(x) for values of x close to 2, but
equal to 2.

x f(x) x f(x)
1.0 2.000000 3.0 8.000000
1.5 2.750000 2:5 5.750000
1.8 3.440000 2.2 4.640000
1.9 3.710000 2.1 4.310000
1.95 3.852500 2.05 4.152500
1.99 3.970100 2.01 4.030100
1.995 3.985025 2.005 4.015025
1.999 3.997001 2.001 4.003001

From the table and the graph of f (a parabola) shown in Figure 1 we see that when
close to 2 (on either side of 2), f(x) is close to 4. In fact, it appears that we can make
values of f(x) as close as we like to 4 by taking x sufficiently close to 2. We express
by saying “the limit of the function f(x) = x> — x + 2 as x approaches 2 is equal to
The notation for this is

lim(x?—x+2)=4

x—2

In general, we use the following notation.

[1] DEFINITION We write
lim f(x) = L

and say “the limit of f(x), as x approaches a, equals L”

if we can make the values of f(x) arbitrarily close to L (as close to L as we like)
by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Roughly speaking, this says that the values of f(x) tend to get closer and closer to
number L as x gets closer and closer to the number a (from either side of a) but x 7
(A more precise definition will be given in Section 2.4.)

An alternative notation for

liinf(x) =L

is f(x) =L as x—a

which is usually read “f(x) approaches L as x approaches a.”
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Notice the phrase “but x # a” in the definition of limit. This means that in finding the
limit of f(x) as x approaches a, we never consider x = a. In fact, f(x) need not even be
defined when x = a. The only thing that matters is how f is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), f(a) is not defined
and in part (b), f(a) # L. But in each case, regardless of what happens at a, it is true that
lim,—,f(x) = L.

Y Y4 y
- L
|
|
- RN | &N
. |
|
0 ; X 0

(@) (®) ©

FIGURE 2 lim f(x)=L in all three cases

X
EXAMPLE | Guess the value of linll —7———1—
x=2l X~ =

= o SOLUTION Notice that the function f(x) = (x — 1)/(x* — 1) is not defined when x = 1, but
8 ol that doesn’t matter because the definition of lim,—., f(x) says that we consider values of
0.5 0.666667 x that are close to a but not equal to a.
0.9 0.526316 The tables at the left give values of f(x) (correct to six decimal places) for values of x
0.99 0.502513 that approach 1 (but are not equal to 1). On the basis of the values in the tables, we make
. 0.999 0.500250 the guess that
. 0.9999 0.500025 oo B
- lim — =0.5 O
L =1 x°—1
! fG Example 1 is illustrated by the graph of f in Figure 3. Now let’s change f slightly by
1.5 0.400000 giving it the value 2 when x = 1 and calling the resulting function g:
1.1 0.476190 1
1.01 0.497512 2 if x # 1
1.001 0.499750 G = %=
J& 0.499975 ) ifx=1

This new function g still has the same limit as x approaches 1. (See Figure 4.)

3 y

FIGURE 3 FIGURE 4
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N2+9 —3

EXAMPLE 2 Estimate the value of lirr& "
—

SOLUTION The table lists values of the function for several values of ¢ near 0.

12+ 9 = 3

t 2

t
+1.0 0.16228
+0.5 0.16553
+0.1 0.16662
+0.05 0.16666
+0.01 0.16667

As t approaches 0, the values of the function seem to approach 0.1666666 . . . and so we

guess that
. A2 +9 -3 1
e .
: Jt2+9 —3
IZ
+0.0005 0.16800 In Example 2 what would have happened if we had taken even smaller values of #? The
+0.0001 0.20000 table in the margin shows the results from one calculator; you can see that something
i +0.00005 0.00000 strange seems to be happening.
5 +0.00001 0.00000 If you try these calculations on your own calculator you might get different values, but
eventually you will get the value 0 if you make ¢ sufficiently small. Does this mean that

. the answer is really O instead of 17 No, the value of the limit is ¢, as we will show in the

f [@ next section. The problem is that the calculator gave false values because 4/t> + 9 is very

‘ ; close to 3 when ¢ is small. (In fact, when ¢ is sufficiently small, a calculator’s value for
Ji2 + 9 is 3.000. . . to as many digits as the calculator is capable of carrying.)

For a further explanation of why calculators Something similar happens when we try to graph the function
sometimes give false values, click on Lies
| My Calculator and Computer Told Me. In

particular, see the section called The Perils \/l‘_z—+—9_ -3
of Subtraction. f ([) = __;2__

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show quite
accurate graphs of f, and when we use the trace mode (if available) we can estimate eas-
ily that the limit is about é But if we zoom in too much, as in parts (c) and (d), then we get
inaccurate graphs, again because of problems with subtraction. 2

0.2 0.2 ’
0.1 0.1
(@) [-5, 5] by [-0.1,0.3] () [~0.1,0.1] by [-0.1, 0.3] (¢) [-1076,107¢] by [-0.1, 0.3] (d) [-1077,107"] by [—0.1, 0.3]

FIGURE 5




sin x

X

£1.0 0.84147098
0.95885108
0.97354586
0.98506736
0.99334665
; 0.99833417
+0.05 0.99958339
+0.01 0.99998333
0.99999583
0.99999983

& COMPUTER ALGEBRA SYSTEMS

Computer algebra systems (CAS) have
£ommands that compute limits. In order to
avoid the types of pitfalls demonstrated in

- Examples 2, 4, and 5, they don't find limits by
fumerical experimentation. Instead, they use
“More sophisticated techniques such as com-
puting infinite series. |If you have access to a
BAS, use the limit command to compute the
{lﬁnits in the examples of this section and to
eheck your answers in the exercises of this

chapter.

FIGURE 7
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sin x

4 EXAMPLE 3 Guess the value of liné
x— x

SOLUTION The function f(x) = (sin x)/x is not defined when x = 0. Using a calculator
(and remembering that, if x € R, sin x means the sine of the angle whose radian mea-
sure is x), we construct a table of values correct to eight decimal places. From the table
at the left and the graph in Figure 6 we guess that

. sinx
lim =1
x—0 X

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument.

FIGURE 6

T
W7 EXAMPLE 4 Investigate lil‘I(l) sin —.
x> X

SOLUTION  Again the function f(x) = sin(7r/x) is undefined at 0. Evaluating the function
for some small values of x, we get

f()=sinw=0 f() =sin2r=0

f(3) =sin37 =0 f(3) =sindmr=0

f(0.1) =sin 10w =0 £(0.01) = sin 1007 = 0
Similarly, £(0.001) = £(0.0001) = 0. On the basis of this information we might be
tempted to guess that
. . AT
lim sin — =
x—0 X

but this time our guess is wrong. Note that although £(1/n) = sin nar = 0 for any integer

n, it is also true that f(x) = 1 for infinitely many values of x that approach 0. The graph
of f is given in Figure 7.

1 y = sin(7/x)

=

—_——
———
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The dashed lines near the y-axis indicate that the values of sin(7/x) oscillate between :
1 and —1 infinitely often as x approaches 0. (See Exercise 39.)
Since the values of f(x) do not approach a fixed number as x approaches 0, ;
i . ’
11!1(1) sin— does not exist O
x— x
f e ; , Cos5x
| - 8 4 cos 5x EXAMPLE 5 Find lllI(l) X = m .
10,000 ! J
: 1.000028 SOLUTION As before, we construct a table of values. From the first table in the margin it
05 0.124920 appears that
005 | o002 (2230 )
0.01 0.000101 e H000
But if we persevere with smaller values of x, the second table suggests that
! 5y cos 5x 5
x x cos 5x
! 10,000 lim | x* + = 0.000100 =
| - x—0 10,000 10,000
0.005 0.00010009
Sl Tt Later we will see that lim, o cos 5x = 1; then it follows that the limit is 0.0001. O
Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is
easy to guess the wrong value if we use inappropriate values of x, but it is difficult to know
when to stop calculating values. And, as the discussion after Example 2 shows, sometimes
calculators and computers give the wrong values. In the next section, however, we will
develop foolproof methods for calculating limits.
2 EXAMPLE 6 The Heaviside function H is defined by
y
0 ifr<O
: H@O) =14, .
1 iftr=0
I 0[ ! [This function is named after the electrical engineer Oliver Heaviside (1850—-1925) and
* can be used to describe an electric current that is switched on at time ¢ = 0.] Its graph is
FIGURE 8 shown in Figure 8.

i As t approaches 0 from the left, H(f) approaches 0. As t approaches 0 from the right,

g H(t) approaches 1. There is no single number that H(z) approaches as ¢ approaches 0.

| Therefore, lim,_.o H(f) does not exist. O
i

ONE-SIDED LIMITS

f We noticed in Example 6 that H(t) approaches 0 as ¢ approaches 0 from the left and H()
‘ approaches 1 as ¢ approaches 0 from the right. We indicate this situation symbolically by
' writing

lixg} H() =0 and Ilirgl+ H(i) =1
The symbol “¢ — 07 indicates that we consider only values of 7 that are less than 0. Like-
wise, “t — 0 indicates that we consider only values of ¢ that are greater than 0.
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[2] DEFINITION We write
lim f(x) =L
and say the left-hand limit of f(x) as x approaches a [or the limit of f(x) as x

approaches a from the left] is equal to L if we can make the values of f(x) arbi-
trarily close to L by taking x to be sufficiently close to a and x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require x to be less
than a. Similarly, if we require that x be greater than a, we get “the right-hand limit of
f(x) as x approaches a is equal to L” and we write

lim £ = L

Thus the symbol “x — a*” means that we consider only x > a. These definitions are illus-
trated in Figure 9.

Yy y
-/
L
f(x) L
0 X — @ X 0
(@) lim f(x)=L (b) lim f(x)=L

By comparing Definition 1 with the definitions of one-sided limits, we see that the fol-
lowing is true.

lim f(x) =L ifandonlyif lim f(x) =L and lim flx) =1L

x—a

I EXAMPLE 7 The graph of a function g is shown in Figure 10. Use it to state the values
(if they exist) of the following:

(a) lim g(x) (b) lim g(x) (c) lim g(x)
(d) lim g(x) (e) lim g(x) (f) lim g(x)

SOLUTION From the graph we see that the values of g(x) approach 3 as x approaches 2 from
the left, but they approach 1 as x approaches 2 from the right. Therefore

(a) lirgl glx) =3 and (b) lirg glx) =1

(c) Since the left and right limits are different, we conclude from (3) that lim, ., g(x)
does not exist.
The graph also shows that

(d) lirglﬁ glx) =2 and (e) llﬁHSl‘ glx) =2
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(f) This time the left and right limits are the same and so, by (3), we have
1in§ glx) =2
Despite this fact, notice that g(5) # 2. O

INFINITE LIMITS

1
EXAMPLE 8 Find lirr(l)—2 if it exists.
x—0 X

\ | SOLUTION As x becomes close to 0, x? also becomes close to 0, and 1/x* becomes very
x ‘ 3 large. (See the table in the margin.) In fact, it appears from the graph of the function
1 f(x) = 1/x? shown in Figure 11 that the values of f(x) can be made arbitrarily large by
i ‘ 1 taking x close enough to 0. Thus the values of f (x) do not approach a number, so
1 | +0.5 ’ 4 lim,—o (1/x?) does not exist. a
‘ ‘ *£0.2 “ 25
’ *0.1 100 To indicate the kind of behavior exhibited in Example 8, we use the notation
+0.05 400
) +0.01 10,000 it e o 5
| 20,001 y 1,000,000 J e
L
y [@) This does not mean that we are regarding « as a number. Nor does it mean that the limit
| 1 exists. It simply expresses the particular way in which the limit does not exist: 1/x* canbe
| made as large as we like by taking x close enough to 0. E
' \ In general, we write symbolically
\y:? lim f(x) = o c
\\  to indicate that the values of f(x) tend to become larger and larger (or “increase without |
0] x bound”) as x becomes closer and closer to a.
FIGURE 11
[4] DEFINITION Let fbea function defined on both sides of a, except possibly at
| aitself. Then
| lim f(x) =
means that the values of f(x) can be made arbitrarily large (as large as we please) :
by taking x sufficiently close to a, but not equal to a. » ;
‘ Another notation for lim, ., f(x) = ®is
yT [ flx) > as x—a
N\ =seo
] Again the symbol % is not a number, but the expression lim, ., f(x) = % is often read as
\ | “the limit of f(x), as x approaches a, is infinity”
0 a X
X/ x=a or “f(x) becomes infinite as x approaches a”
i
or “f(x) increases without bound as x approaches a”
FIGURE 12
lim f(x) = This definition is illustrated graphically in Figure 12.

x—a




When we say a numb! . i
mean that it is negative but its magnitude

{absolute value) is large

FIGURE 13
lim f(x)=—<

y
SN { |

/ 0\\ |

|
|

(a) lim f(x)=c0

x-a

FIGURE 14

er is “large negative,”
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A similar sort of limit, for functions that become large negative as x gets close to a, is
defined in Definition 5 and is illustrated in Figure 13.

DEFINITION Let f be defined on both sides of a, except possibly at a itself. Then

lim f(x) = —

x—a

means that the values of f(x) can be made arbitrarily large negative by taking x
sufficiently close to a, but not equal to a.

The symbol lim, ., f(x) = —% can be read as “the limit of f(x), as x approaches .
is negative infinity” or “f(x) decreases without bound as x approaches a.” As an example

| ( 1 )
lim - | = —o©
x—0 X

Similar definitions can be given for the one-sided infinite limits

we have

lim f(x) = lim f(x) = 00

x—>a v—at

lim f(x) = — lim f(x) = —

x—a~ x—a™

remembering that “x — a~” means that we consider only values of x that are less than a,
and similarly “x — a*” means that we consider only x > a. Ilustrations of these four
cases are given in Figure 14.

y y w ’
i

‘i \
o[ 4| \ —F 5 = -
| |
| |
(b) lim flx)y=c< (c) lim flx)=—© (d) lim_ f(x) o
] [6] DEFINITION The line x = a is called a vertical asymptote of the curve y = f(x)
| if at least one of the following statements is true:
\ lim f(x) = ® lim f(x) = o lim flx) ==
‘ lim f(x) = — lim f(x) = —= lim f(x) = —* ‘
| v>a x—a~ x—at |
\ _

For instance, the y-axis is a vertical asymptote of the curve y = 1/x* because
lim, .o (1/x?) = =, In Figure 14 the line x = a is a vertical asymptote in each of the four
cases shown. In general. knowledge of vertical asymptotes is very useful in sketching
graphs.
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4
5._
0 X
x=3
FIGURE 15

EXAMPLE 9 Find lim
3t x — 3 —3-x— 3

SOLUTION If x is close to 3 but larger than 3, then the denominator x — 3 is a small posi-

tive number and 2x is close to 6. So the quotient 2x/(x — 3) is a large positive number.

Thus, intuitively, we see that
. 2%
lim =
-3t x—3

Likewise, if x is close to 3 but smaller than 3, then x — 3 is a small negative number but
2x is still a positive number (close to 6). So 2x /(x — 3) is a numerically large negative

number. Thus
. 2x
lim = —®
x=3" X — 3

The graph of the curve y = 2x/(x — 3) is given in Figure 15. The line x = 3 is a verti-
cal asymptote. O

EXAMPLE 10 Find the vertical asymptotes of f(x) = tanx.
SOLUTION Because

there are potential vertical asymptotes where cos x = 0. In fact, since cos x — 0" as
x — (m/2)” and cosx — 0~ as x — (7/2)", whereas sin x is positive when x is near
/2, we have

lim tanx = ® and lim tanx = —®
x—(m/2)” x—(m/2)*

This shows that the line x = 77/2 is a vertical asymptote. Similar reasoning shows
that the lines x = (2n + 1)7r/2, where n is an integer, are all vertical asymptotes of
f(x) = tan x. The graph in Figure 16 confirms this.

|
I
|
|
|
I

3w . m/m 3w X

.; 2 2 2
| | | |
' I I |

FIGURE 16 | | I

y=tanx I | I O
\ | 2.2 | EXERCISES
; 1. Explain in your own words what is meant by the equation 2. Explain what it means to say that
1in% fx)=5 lirrllf fx)=3 and lirP+ flx)=17
Is it possible for this statement to be true and yet f (2) =37 In this situation is it possible that lim,—.; f(x) exists?

‘ Explain.

Explain.
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stream after 7 hours. Find

lim £(?)

1—12

and lim £(z)
t—12%

and explain the significance of these one-sided limits.

f(r)

Q
\

\

300

]

150

FH (1L Use the graph of the function f(x) = 1/(1 + 2'/v)
value of each limit, if it exists. If it does not exi
why.

(a) Jim - f(x)

to state the
st, explain
®) lim f() () lim f(x)

12. Sketch the graph of the following function and use it to deter-
mine the values of a for which lim,_., f(x) exists:

=% if x<—1
f(x) =<x if -1=sx<]
(x—=1)? ifx=1

13-16 Sketch the graph of an example of a function f that
satisfies all of the given conditions.

lim_ £(x)

13. linl1 flx) =2, =9

14. lim f(x) =1,
x—(0~

f(x)

lim f(x) = -1,
r—0*

1)

lim f(x) =0,
=1,

lim. =1

x—s2

f(0) is undefined

5] lim f(x) = 4, lim f(x) =2, lim f(x) =2,
@ =3 f(-2)=1

7

16. @} flx) =3, ]iﬂq f(x) =3, 11'11 f(x)
f =1, f4=-1
-

-3,

7

A

17-20 Guess the value of the limit (if it exists) by evaluating the
function at the given numbers (correct to six decimal places).

A
A

x? — 2x

m

—2

x =125,2.1,2.05,2.01, 2.005, 2.001,

17. 1i :
v =x=2
1

x*
1

9,195, 1.99, 1.995, 1.999

18, lim — — 2%
==l X" = x =2
x=0,-0.5,~-0.9, —0.95, —0.99. —0.999,
=2,-15,-1.1, -1.01, —1.001
. sin x
19. lim—— = *1, £0.5, 0.2, 0.1, *0.05, =0.01
=0 x + tan x
— "
. vJx —4
20. lim ———— x = 17, 16.5, 16.1, 16.05, 16.01,
x—16 x — 16

15,15.5,15.9, 15.95, 15.99

- O

21-24 Use a table of values to estimate the value of the limit,
If you have a graphing device, use it to confirm your result
graphically.

——
+4 -2 tan 3;
2 i 22, lim — 2% ;
x—0 x x—0 tan S5x :
J 6 __ 1 9.: — 5 ?
23. lim = 24, lim ———
=1 x" — ] x—0 X

———————

25-32 Determine the infinite limit.

s o= D ) x+2 %
25. lim 26. i
=3t x + 3 =3 x + 3
7] tim—2—% 28, fim—r—"
27.] lim ——— . lim —
sl (x - 1)? =0 x*(x + 2)
29, lim — 30. Lim cot
. T 5 Ot
e R g X
3. i 2. lim =% 2
. lim xcscx clim ——m——
on- =27 x* —4x + 4
eeen
33. Determine lim and lim

x—1" x—»1T X] — ]
(a) by evaluating f(x) = 1/(x* — 1) for values of x that
approach 1 from the left and from the right,
(b) by reasoning as in Example 9, and

(c) from a graph of f.
34. (a) Find the vertical asymptotes of the function
B x4+ 1
3x — 2x2

(b) Confirm your answer to part (a) by graphing the function.

B5. (a) Estimate the value of the limit lim, o (1 + x)'* to five
decimal places.

(b) lustrate part (a) by graphing the function y = (1 + x)!/*,

36. (a) By graphing the function f(x) = (tan 4x)/x and zooming

in toward the point where the graph crosses the y-axis,
estimate the value of lim, ., £(x).




,~ (b) Check your answer in part (a) by evaluating f(x) for val-
ues of x that approach 0.

. (a) Evaluate the function f(x) = x> — (2%/1000) for x = 1,
0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the value of

li J
=5 \* 7 1000

(b) Evaluate f(x) for x = 0.04, 0.02, 0.01, 0.005, 0.003, and
0.001. Guess again.

38. (a) Evaluate A(x) = (tan x — x)/x* for x = 1, 0.5, 0.1, 0.05,
0.01, and 0.005.
tanx — x

f (b) Guess the value of lin}) —

(c) Evaluate h(x) for successively smaller values of x until
you finally reach a value of 0 for A(x). Are you still con-
fident that your guess in part (b) is correct? Explain
why you eventually obtained a value of 0. (In Section 7.8
a method for evaluating the limit will be explained.)

(d) Graph the function A in the viewing rectangle [—1, 1]

by [0, 1]. Then zoom in toward the point where the graph

crosses the y-axis to estimate the limit of A(x) as x

approaches 0. Continue to zoom in until you observe

distortions in the graph of . Compare with the results of

part (c).
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@ 39. Graph the function f(x) = sin(/x) of Example 4 in the
viewing rectangle [—1, 1] by [—1, 1]. Then zoom in toward
the origin several times. Comment on the behavior of this
function.

40. In the theory of relativity, the mass of a particle with
velocity v is

mo
L S
V1 —v?/c?
where my is the mass of the particle at rest and c is the speed
of light. What happens as v — ¢=?
% 41. Use a graph to estimate the equations of all the vertical

asymptotes of the curve

y = tan(2 sin x) -T<x<an

Then find the exact equations of these asymptotes.

¥942] (a) Use numerical and graphical evidence to guess the value
of the limit
I x* -1
im
x=>1 X — 1

(b) How close to 1 does x have to be to ensure that the func-
tion in part (a) is within a distance 0.5 of its limit?

2.3 | CALCULATING LIMITS USING THE LIMIT LAWS

In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw that
such methods don’t always lead to the correct answer. In this section we use the following
properties of limits, called the Limit Laws, to calculate limits.

exist. Then

4. Tim [ f(x)g(x)] =

s>a g(x)  lim

LIMIT LAWS Suppose that ¢ is a constant and the limits

I lim [f(x) + g(x)] = lim f(x) + lim g(x)
2. lim [f(x) = g(x)] = lim f(x) — lim g(x)

3. lim [cf(x)] = c lim f(x)

fx) lim

lim f(x) and

x—a

lim g(x)

lim f(x) - lim g(x)

fx)
o [ limg(d) 0

I BB o i
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These five laws can be stated verbally as follows:

SUM LAW I. The limit of a sum is the sum of the limits.

DIFFERENCE LAW 2. The limit of a difference is the difference of the limits.

CONSTANT MULTIPLE LAW 3. The limit of a constant times a function is the constant times the limit of the
function.

PRODUCT LAW 4. The limit of a product is the product of the limits.

QUOTIENT LAW 5. The limit of a quotient is the quotient of the limits (provided that the limit of the

denominator is not 0).

It is easy to believe that these properties are true. For instance, if f(x) is close to L and
! g(x) is close to M, it is reasonable to conclude that f(x) + g(x) is close to L + M. This gives
{ us an intuitive basis for believing that Law 1 is true. In Section 2.4 we give a precise def-
inition of a limit and use it to prove this law. The proofs of the remaining laws are given
in Appendix F.

EXAMPLE | Use the Limit Laws and the graphs of f and g in Figure 1 to evaluate the
following limits, if they exist.

(2) lim [f(x) + 59(x)] (b) lim [f(x)g(x)] (©) lim %

1]
\}—i
o D\

\ |
u
B
g

SOLUTION
(a) From the graphs of f and g we see that

lim f(x) =1 and lim g(x) = —1
FIGURE | x—>—2 x——2

Therefore, we have

lim [f() + 5g()] = lim f(x) + lim [5g(0)]  (byLaw D)

= lim f(x) +5 lir{l2 g(x) (by Law 3)

x—>—2
=1+5-1)=-4
(b) We see that lim,—; f(x) = 2. But lim, ., g(x) does not exist because the left and
right limits are different:
lirﬂ glx) = —2 hrﬂ glx) = —1
So we can’t use Law 4 for the desired limit. But we can use Law 4 for the one-sided
limits:
lim [f(Dg] =2+ (-2 =—4  Jim [f(dg(a] =2+ (~1) = =2

The left and right limits aren’t equal, so lim,—, [ f(x)g(x)] does not exist.
(c) The graphs show that

lmg flx) =14 and lirr% gx)=0

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not
exist because the denominator approaches 0 while the numerator approaches a nonzero
number. O




POWER LAW

ROOT LAW
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If we use the Product Law repeatedly with g(x) = f(x), we obtain the following law.

6. llir}’ [f)]" = [}13} if (x)]" where n is a positive integer

In applying these six limit laws, we need to use two special limits:

l\ 7. imc=c¢ 8. limx=a

x—a xX—a

These limits are obvious from an intuitive point of view (state them in words or draw
graphs of y = ¢ and y = x), but proofs based on the precise definition are requested in the
exercises for Section 2.4.

If we now put f(x) = x in Law 6 and use Law 8, we get another useful special limit.

9. lim x" = a"

x—a

where n is a positive integer

A similar limit holds for roots as follows. (For square roots the proof is outlined in Exer-
cise 37 in Section 2.4.)

10. lim ¢/x = &{/a  where n is a positive integer

x—a

‘g (If n is even, we assume that a > 0.)

More generally, we have the following law, which is proved in Section 2.5 as a conse-
quence of Law 10.

1. lim Jfx) = \'/lim f(x) where n is a positive integer

[If n is even, we assume that lim f(x) > 0.]

x—a

EXAMPLE 2 Evaluate the following limits and justify each step.

. 5 X3+ 2xr—1
(a) lim (2x* — 3x + 4) (b) lim —————
x—5 x—>—2 5 p—= 3_x
SOLUTION
(a) Im} (2x2 —3x+4) = 11}1: (2x2) = 1iII§ (3x) + 11rr§ 4 (by Laws 2 and 1)
:21_irr§x2— 31irr;x+lirr:4 (by 3)
=2(5%) - 3(5) + 4 (by 9, 8, and 7)

= 39
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[NEWTON AND LIMITS

Isaac Newton was born on Christmas Day in
1642, the year of Galileo’s death. When he
entered Cambridge University in 1661 Newton
didn’t know much mathematics, but he learned
quickly by reading Euclid and Descartes and
by attending the lectures of Isaac Barrow.
Cambridge was closed because of the plague in
1665 and 1666, and Newton returned home to
reflect on what he had learned. Those two years
were amazingly productive for at that time he
made four of his major discoveries: (1) his
representation of functions as sums of infinite
series, including the binomial theorem; (2) his
work on differential and integral calculus; (3) his
laws of motion and law of universal gravitation;
and (4) his prism experiments on the nature of
light and color. Because of a fear of controversy
and criticism, he was reluctant to publish his dis-
coveries and it wasn't until 1687, at the urging of
the astronomer Halley, that Newton published
Principia Mathematica. In this work, the greatest
scientific treatise ever written, Newton set forth
his version of calculus and used it to investigate
mechanics, fluid dynamics, and wave motion,
and to explain the mation of planets and comets.
The beginnings of calculus are found in the
calculations of areas and volumes by ancient
Greek scholars such as Eudoxus and Archimedes.
Although aspects of the idea of a limit are
implicit in their “method of exhaustion,” Eudoxus
and Archimedes never explicitly formulated the
concept of a limit. Likewise, mathematicians
such as Cavalieri, Fermat, and Barrow, the imme-
diate precursors of Newton in the development
of calculus, did not actually use limits. It was
Isaac Newton who was the first to talk explicitly
about limits. He explained that the main idea
behind limits is that quantities “approach nearer
than by any given difference.” Newton stated
that the limit was the basic concept in calculus,
but it was left to later mathematicians like
Cauchy to clarify his ideas about limits.

(b) We start by using Law 5, but its use is fully justified only at the final stage when we
see that the limits of the numerator and denominator exist and the limit of the denomina-
tor is not 0.

24222 —1 lim (x* + 2x% — 1)
lim =222 (by Law 5)
=2 5—=13x »111'{12 (5-13x)

lim x* + 2 lim x*> — lim 1

x—>—2 xX—>=2 x—>—2
= 2, and
lim 5 — 3 lim x (vl 2 and®
x—=2 x—>=2
(=2 +2(=2)* - 1
= by 9, 8, and 7
5 - 3(—2) (by and 7)
__ 1 -
11

If we let £(x) = 2x*> — 3x + 4, then f(5) = 39. In other words, we would have
gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct substi-
tution provides the correct answer in part (b). The functions in Example 2 are a polynomial
and a rational function, respectively, and similar use of the Limit Laws proves that direct
substitution always works for such functions (see Exercises 53 and 54). We state this fact
as follows.

DIRECT SUBSTITUTION PROPERTY If f is a polynomial or a rational function and a
is in the domain of f, then

lim f(x) = f(a)

x—a

Functions with the Direct Substitution Property are called continuous at a and will be
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as
the following examples show.

2

1
EXAMPLE 3 Find lim ——.
=1 x — 1
SOLUTION Let f(x) = (x* — 1)/(x — 1). We can’t find the limit by substituting x = 1
because f(1) isn’t defined. Nor can we apply the Quotient Law, because the limit of the
denominator is 0. Instead, we need to do some preliminary algebra. We factor the numer-
ator as a difference of squares:
=1 {x=1)x+1)
x— 1 x%— 1

The numerator and denominator have a common factor of x — 1. When we take the limit
as x approaches 1, we have x # 1 and so x — 1 # 0. Therefore we can cancel the com-
mon factor and compute the limit as follows:

Fe -Dx+1
limx—=limw=lim(x+l)=l+l=2

x—>1 X — x—1 x—1 x—1

The limit in this example arose in Section 2.1 when we were trying to find the tangent to
the parabola y = x? at the point (1, 1). O

In Example 3 we were able to compute the limit by replacing the given func-
tion f(x) = (x> — 1)/(x — 1) by a simpler function, g(x) = x + 1, with the same limit.
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/ This is valid because f(x) = g(x) except when x = 1, and in computing a limit as x
/ y=flx) approaches 1 we don’t consider what happens when x is actually equal to 1. In general, we
// have the following useful fact.

r If f(x) = g(x) when x # a, then lim f(x) = lim g(x), provided the limits exist.
L x—a x—a

EXAMPLE 4 Find lAirrll g(x) where

58 +1 if x#1
. /S y=g) glx) = {X ' * B
T if x=1

SOLUTION Here g is defined at x = 1 and g(1) = , but the value of a limit as x approaches
1 does not depend on the value of the function at 1. Since g(x) =x + 1 forx # 1, we
have

l{ﬂll g(x) = IIII} x+1)=2 O

~ FIGURE 2

The graphs of the functions f (from Note that the values of the functions in Examples 3 and 4 are identical except when

Example 3) and g (from Example 4) x = 1 (see Figure 2) and so they have the same limit as x approaches 1.
B3+ h*-9
1 EXAMPLE 5 Evaluate ]11n(1) ——z——
SOLUTION If we define
3+h?*-9
F(h) = i—h)_—

then, as in Example 3, we can’t compute lim;—o F(h) by letting h = 0 since F(0) is

undefined. But if we simplify F(h) algebraically, we find that

9+6h+h?) -9 6h+h
h

F(h) = =6+h

(Recall that we consider only 2 # 0 when letting h approach 0.) Thus

3+h)?—9
lim(———l)——=lim(6+h)=6 O
h—0 h h—0
o g2 +9 =3
EXAMPLE 6 Find lm& ——7———

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the denomi-
nator is 0. Here the preliminary algebra consists of rationalizing the numerator:

FF9-3_, JAF9-3 JAFO+D

!1{% t? =0 t? Ji2+9 +3
=i _ui_ = m ____i___—
=% (Jr+9 +3) =0 (/i +9 +3)

. 1 1
= lim =

1 1
Hoﬁz+9+3#\/11m(r2+9)+343+3 6
t—0

This calculation confirms the guess that we made in Example 2 in Section 2.2. O
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& The result of Example 7 looks plausible
from Figure 3.

FIGURE 3
y
_ 1
b A s 1
—
0 "
—3
FIGURE 4

& Itis shown in Example 3 in
Section 2.4 that lim, g+ /x = 0.

‘—'ﬁ

Some limits are best calculated by first finding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 2.2. It says that a two-sided
limit exists if and only if both of the one-sided limits exist and are equal.

, _
| [1] THEOREM Limf(x) =L  if and onlyif  lim f(x) =L = lim f(x) |

] x—a

When computing one-sided limits, we use the fact that the Limit Laws also hold for
one-sided limits.

EXAMPLE 7 Show that lim [x| = 0.

SOLUTION Recall that

fx‘— x if x=0
—x ifx<0

Since | x| = x for x > 0, we have
lim x| = lim x = 0
x—0% x>0k

For x < 0 we have |x| = —x and so

lim |x| = lim (—x) =0
x—0~ x—0~

Therefore, by Theorem 1,

lim x| =0 O
x—0
X
2 EXAMPLE 8 Prove that lim |——’ does not exist.
x—=0 Xx
X X
SOLUTION lim u =lm—=1m1=1
x—=0t x x—=0t x x—0t
X . !
lim u= lim — = lim (—1) = —1
x—0- x x—=0" Xx x—0~

Since the right- and left-hand limits are different, it follows from Theorem 1 that
lim, o | x|/x does not exist. The graph of the function f(x) = |x|/x is shown in ;
Figure 4 and supports the one-sided limits that we found. OF

EXAMPLE 9 If :

f(x):{\/x—4 if x>4

8 —2x if x<4

°
determine whether lim,_, f(x) exists. §

SOLUTION Since f(x) = +/x — 4 for x > 4, we have

lim f(x) = lim Vx -4 =4-4 =0




or function.

FIGURE 6

Other notations for [x] are [x] and LxJ. The
ast integer function is sometimes called the

- Greatest integer function

Since f(x) = 8 — 2x for x < 4, we have

lir?_f(x)= 1ir2(8—2x)=8—2-4=0

The right- and left-hand limits are equal. Thus the limit exists and

The graph of f is shown in Figure 5.

EXAMPLE 10 The greatest integer function is defined by [x] =
that is less than or equal to x. (For instance, [4] = 4, [4.8] = 4, [
“—%]] — —1.) Show that lim s [x] does not exist.

SOLUTION The graph of the greatest i

for 3 < x < 4, we have

Since [x] = 2 for 2 < x < 3, we have

Because these one-sided limits are n

The next two theorems give two additional propertie

found in Appendix F.

SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS

lim f(x) = 0

the largest integer

1=3[v2]=1

nteger function is shown in Figure 6. Since [x] = 3

lim [x] = lim 3 =13
x—3% x—3*%

lirg\_ [x] = lirg_ 2i=2

ot equal, lim .3 [x] does not exist by Theorem 1.

s of limits. Their proofs can be

THEOREM If f(x) < g(x) when x is near a (except possibly at a) and the limits
of f and g both exist as x approaches a, then

lim f(x) < lim g()

[3] THE SQUEEZE THEOREM If f(x) < g(x) < h(x) when x is near a (except

possibly at a) and

then

lim f(x) = liin h(x) =L

lim g(x) = L

The Squeeze Theorem, which is so
ing Theorem, is illustrated by Figure
h(x) near a, and if f and h have the same limit L at a,

limit L at a.

metimes called the Sandwich Theorem or the Pinch-
7. Tt says that if g(x) is squeezed between f(x) and
then g is forced to have the same
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.
7 EXAMPLE Il Show that Im%x sin— = 0.
b ian X
SOLUTION First note that we cannot use
_ P
lim x2sin — = lim x” + lim sin —
x—0 x x—0 x—0 X
because lim o sin(1/x) does not exist (see Example 4 in Section 2.2). However, since
!
—1<sin—=1
X
‘ 3 we have, as illustrated by Figure 8,
2 s 1 2
—x’<x*sin—=<x
X

/\ v

ba

We know that

limx*=0 and lim (—x?) =0

x—0 x—0

Taking f(x) = —x% g(x) = x2 sin(1/x), and h(x) = x* in the Squeeze Theorem, we

obtain
FIGURE 8 1
y = x%sin(1/x) EI_I,I}] x?sin P 0 o
2.3 | EXERCISES
1. Given that ) . (x)
(©) lim [£(x)g(x)] @ lim -7
lim /() =4 limg(y=-2 lmh(=0 I
(e) lim [x*f ()] (f) lim y3 +f (x)
find the limits that exist. If the limit does not exist, explain why.
(a) lim [f(x) + 59(x)] (b) lim [g(0)] 39 Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).
. . 3f(x) 2
/ 2L ox ikl
() lim vf(x) (@) = 3. dim Gx'+20—x+ D) 4 11;2)6—2:—6——4
X = X %6 ™
. 9(x) . g(x)h(x)
e) lim-~— f) lim~————
© 150 T 5. lim (1 +35) — 667 + &) 6 Jim (24 DY+ 3
2. The graphs of f and g are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why. 1+ 3x 3
7. 5\ ————= (8] lim u*+3u+6
-1\ 1+ 4x* + 3x u—-2

9. lim /16 — x?

x—4"

e

10. (a) What is wrong with the following equation?

g xX+x—6

(@ lim [£() + g(0)] (v) lim [£(x) + g(2)] 2

=x+3




(b) In view of part (a), explain why the equation
2+ %—6
lim ———— = lim (x + 3)
-2 x— 2 —2

is correct.

11-30 Evaluate the limit, if it exists.
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functions f(x) = —x? g(x) = x2 cos 207rx, and h(x) = x? on
the same screen.

34. Use the Squeeze Theorem to show that
: .
lmé Vx3+ x2sin—=0
X X

[lustrate by graphing the functions f, g, and  (in the notation

S 2 2
h. lim _V_i_x_z‘_é 12, lim %)% of the Squeeze Theorem) on the same screen.
2 - x—>-4 x* + 3x — - )
& B5] If 4x — 9 < f(x) < x> — 4x + 7 forx = 0, find lim, 4 f(x).
16 ) x> —=4x .
; 13. !Tg = 14. !‘_‘}} A =4 36. If 2x < g(x) < x* — x* + 2 for all x, evaluate lim,_., g(x).
. 2
: -9 6 lim x* —4x 37. Prove that lim x*cos— = 0.
@rl—l»m—z 22+ 7t + 3 Tae-1 x?—3x—4 ‘ *
L - 16 -1 38. Prove that ,lilgl» Vx [1 + sin’(2m/x)] = 0.
i ————————— 18. lim }
h—0 h =1 x? — 1 39-44 Find the limit, if it exists. If the limit does not exist,
X+ 2 _ . 2+ h*-38 explain why.
H9 lim ———— 20, 1
B lim s B I h L 2x+ 12
39, lim (2x +|x - 3]) 40. lim [+ 6]
9=t Vvi+h —1 o g (e
2k lim — 22. lim
- =M 2x — 1 2 — |x]
— , 41, lim ——— 4. 1
TR ekl 2, f 22 ] s 26 = = 2+ x
T =T e xt—1
| 1 1 1
1 . 1 43, liI;I)’l <— - |—l~> 44, lir(lj'l <— — ﬁ)
T — x=0"\ X x =0+ \ x x
25. lim I 26. lim <i 1 >
x4 4 + x —o\t P4y
2. 1im 4 - Jx 2. Tim B+hn"' -3 45. The signum (or sign) function, denoted by sgn, is defined by
: 16 ]6, — 2 : h—
L = ~1 ifx<0
29. lim <; - l 30. lim %VX‘*H sgnx = 0 ifx=0
=0 \ /1 + ¢ t x4 x+4 1 if x>0
(3) Esti h (a) Sketch the graph of this function.
3 £ e tie value of (b) Find each of the following limits or explain why it does
X .
lim ————— not exist.
=0 /1 + 3x — 1

by graphing the function f(x) = x/(y/1 + 3x — 1).
(b) Make a table of values of f(x) for x close to 0 and guess
the value of the limit.

(¢) Use the Limit Laws to prove that your guess is correct.

» (3) Use a graph of

fo= B3

to estimate the value of lim,_,, f(x) to two decimal
places.

(b) Usg a table of values of f(x) to estimate the limit to four
decimal places,
(¢) Use the Limit Laws to find the exact value of the limit.

EE 33, Use

> the Squeeze Theorem to show that
im,

0 (x? cos 207x) = 0. Mlustrate by graphing the

(1) lir}){ sgn x (i1) Iir(l){ sgn x

(iii) lirr& sgn x (iv) lin(l) | sgn x|

46. Let

4—x* ifx<?2
f(x)_{x—l if x>2

(a) Find lim,—,- f(x) and lim ,—,+ f(x).
(b) Does lim .., f(x) exist?
(c) Sketch the graph of f.

2 _
47, Let F(x) = >~ — L
x=1]
(a) Find
(i) lim F(x) (ii) lim F(x)
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(b) Does lim ., F(x) exist?
(c) Sketch the graph of F.

48. Let
x if x<1
3 if x=1
90 =1y s if1<x<2
x—3 ifx>2

(a) Evaluate each of the following limits, if it exists.
(@) lim g(x) i) limg(x) (i) g(1)

(iv) lim g(x) (v) lim g(x) (vi) lim g(x)

(b) Sketch the graph of g.

[49. (a) If the symbol [ ] denotes the greatest integer function
defined in Example 10, evaluate

@) l_imﬂ [x] (ii) vlimz [x]
(b) If n is an integer, evaluate
i) lim [x] (i1) ]jrq [x]

(c) For what values of a does lim,—., [x] exist?

(i) tim ]

50. Let f(x) = [cosx], —m<x =<
(a) Sketch the graph of f.
(b) Evaluate each limit, if it exists.

(i) lim f(x) (i) bm f(x)
(i) lim f(x) (iv) lim f(x)

(c) For what values of a does lim, . ., f(x) exist?

51. If f(x) = [x] + [—x]. show that lim__,, f(x) exists but is not
| equal to f(2).

52. In the theory of relativity, the Lorentz contraction formula

| L = Los/1 = v¥c?

i expresses the length L of an object as a function of its velocity

’ » with respect to an observer. where L, is the length of the
object at rest and c is the speed of light. Find lim, .- L and
interpret the result. Why is a left-hand limit necessary?

53. If p is a polynomial, show that lim ., p(x) = pla).

54. If ris a rational function, use Exercise 53 to show that

lim r(x) = r(a) for every number a in the domain of r.

x—=>a

-8
s5. 1 lim 290 =8 = 10, find lim £(x).
-1 x—1 x—1
56. If lirr(x) &?— = 5, find the following limits.
X=¥ X

(a) lim f(x) (b) lim f—(ﬁ
x—0 x—0 X

57. If

if x is rational

=1

prove that lim o f(x) = 0.

if x is irrational

[58) Show by means of an example that lim,_,, [ f(x) + g(x)] may
exist even though neither lim,—, f(x) nor lim—. g(x) exists.

59. Show by means of an example that lim, ., [ f(x)g(x)] may exist
even though neither lim, ., f(x) nor lim; ., g(x) exists.

J6—x —2

60. Evaluate lim —3\/—;—__]
x—2 —x —

[61.] Is there a number a such that

o 3%*+ax+a+3
llm——z——_——_
x—>=2 X%+ % =2

exists? If so, find the value of a and the value of the limit.

62. The figure shows a fixed circle C with equation
(x — 12 + y* = 1 and a shrinking circle C> with radius r and
center the origin. P is the point (0, ), Q is the upper point of
intersection of the two circles, and R is the point of intersection
of the line PQ and the x-axis. What happens to R as C, shrinks,
that is, as r — 07?

G

o ke R G




# It is traditional to use the Greek letter &
{delta) in this situation.
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THE PRECISE DEFINITION OF A LIMIT

The intuitive definition of a limit given in Section 2.2 is inadequate for some purposes
because such phrases as “x is close to 27 and “f(x) gets closer and closer to L” are vague.
In order to be able to prove conclusively that

. 5 cos 5x _ . _
1111(1) (x + 10’000) 0.0001 or 113(1) B 1

we must make the definition of a limit precise.
To motivate the precise definition of a limit, let’s consider the function

f(x)={2x—1 if x#3

6 if x=3

Intuitively, it is clear that when x is close to 3 but x # 3, then f(x) is close to 5, and so
lim,—; f(x) = 5.

To obtain more detailed information about how f(x) varies when x is close to 3, we ask
the following question:

How close to 3 does x have to be so that f(x) differs from 5 by less than 0.17

The distance from x to 3 is | x — 3| and the distance from f(x) to 5 is | f(x) — 5], so our
problem is to find a number & such that

| f(x) — 5] <0.1 if |x— 3] <8 bibx =3

If |x —3 | > (), then x # 3, so an equivalent formulation of our problem is to find a num-
ber & such that

fw —5| <01 if 0<|x-3[<8
Notice that if 0 < |x — 3| < (0.1)/2 = 0.05, then
1f) = 5| =|@x—1) = 5| =|2x— 6| =2/x — 3| <01
that is, If®) - 5] <01 if 0<|x—3[<005

Thus an answer to the problem is given by & = 0.05; that is, if x is within a distance of
0.05 from 3, then f(x) will be within a distance of 0.1 from 5.

If we change the number 0.1 in our problem to the smaller number 0.01, then by using
the same method we find that f(x) will differ from 5 by less than 0.01 provided that x dif-
fers from 3 by less than (0.01)/2 = 0.005:

|f(x) —5| <001 if 0<[x—3]<0005
Similarly,

|f@) — 5| <0001 if  0<|x—3]<00005

The numbers 0.1, 0.01, and 0.001 that we have considered are error tolerances that we
might allow. For 5 to be the precise limit of f(x) as x approaches 3, we must not only be
able to bring the difference between f (x) and 5 below each of these three numbers; we
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must be able to bring it below any positive number. And, by the same reasoning, we can!
If we write & (the Greek letter epsilon) for an arbitrary positive number, then we find as
before that

™ |fx) —5|<e if 0<\x-3|<5=_€2.

This is a precise way of saying that f(x) is close to 5 when x is close to 3 because (1) says
that we can make the values of f(x) within an arbitrary distance & from 5 by taking the val-
ues of x within a distance &/2 from 3 (but x # 3).

Note that (1) can be rewritten as follows:

if 3—-86<x<3+90 (x # 3) then 5—e<flx)<5+e

and this is illustrated in Figure 1. By taking the values of x (# 3) to lie in the interval
(3 — 8,3 + &) we can make the values of f(x) lie in the interval (5-¢85+¢).

Sid ’ e i
{S(’:x)] t 85 Using (1) as a model, we give a precise definition of a limit.
here | 5—¢
DEFINITION Let f be a function defined on some open interval that contains {\
| the number a, except possibly at a itself. Then we say that the limit of f(x) as x ,
' approaches a is L, and we write
3N\ lim £(x) = L
3-8 3+96 '
when x is in here if for every number & > 0 there is a number & > 0 such that l
(x#3) ]
if 0<|x—a|<$é th i(x) = L} <
— if 0<|x—al en |f(x) |<e i

%

as follows:

Since | x — a| is the distance from x to a and | f(x) — L|is the distance from f(x) to L,
and since & can be arbitrarily small, the definition of a limit can be expressed in words i’g

Jim, . f(x) = L means that the distance between f(x) and L can be made arbitrarily small
by taking the distance from x to a sufficiently small (but not 0).

Alternatively,

lim, ., f(x) = L means that the values of f(x) can be made as close as we please to L
by taking x close enough to a (but not equal to a).

We can also reformulate Definition 2 in terms of intervals by observing that the in-
equality |x — a| < & is equivalent to _§< x —a < & which in turn can be written
as a— 6<x<a+ b Also 0< |x — al is true if and only if x — a # 0, that is.
x # a. Similarly, the inequality | f(x) — L| < & is equivalent t0 the pair of inequalities
L—e< f(x)<L+e Therefore, in terms of intervals, Definition 2 can be stated as
follows:

lim, ., f(x) = L means that for every € > 0 (no matter how small ¢ is) we can find
§ > 0 such that if x lies in the open interval (a — 8,a + &) and x # a, then f(x) lies in
the open interval (L — &, L+ ¢g).

We interpret this statement geometrically by representing a function by an arrow diagram
as in Figure 2, where f maps a subset of R onto another subset of R.
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#

_— 2 e

X a i
g

The definition of limit says that if any small interval (L — &, L + ¢) is given around L, I
then we can find an interval (@ — 8,a + &) around a such that J maps all the points in

(@ — 6,a + §) (except possibly a) into the interval (L — &, L + &). (See Figure 3.) §
i
x fx) |

{ ) =y ey A

a-8 4 g+4 L-e L L+¢ |

Another geometric interpretation of limits can be given in terms of the graph of a func-
tion. If &€ > 0 is given, then we draw the horizontal lines y = L + ¢ and y=L - gand
the graph of f. (See Figure 4.) If lim, ., f(x) = L, then we can find a number & > 0 such
that if we restrict x to lie in the interval (@ — 8,a + 8) and take x = a, then the curve
y = f(x) lies between the lines Yy=L—¢eandy=L + & (See Figure 5.) You can see that
if such a § has been found, then any smaller & will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work for
every positive number &, no matter how small it is chosen. Figure 6 shows that if a smaller o
& is chosen, then a smaller & may be required. &

b

y
L+e
.f().() - y=L+e /i y=L+e
o L = e Z

L=¢g
: — sty 5
0 /a\ x 0 /a\ x
a—=8 a+é a=6 a+d
when x is in here
(x# a)
FIGURE 5 FIGURE 6

EXAMPLE | Use a graph to find a number & such that
if |[x—1|/<é& then [(x* = 5x +6) — 2| <02

In other words, find a number § that corresponds to & = 0.2 in the definition of a limit
for the function f(x) = x> — 5x + 6 witha = 1 and L=2

SOLUTION A graph of f is shown in Figure 7; we are interested in the region near the point
(1, 2). Notice that we can rewrite the inequality

|(x* - 5x+6) —2]| <02

as 18<x}*—5x+6<22
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2:3

\ y=2.2
)

YTXB—S,\'-F()
(1,2

y=138

M

1.

i,

FIGURE 8

EEB In Module 2.4/4.4 you can explore
the precise definition of a limit both graphi-
cally and numerically.

So we need to determine the values of x for which the curve y = x* — 5x + 6 lies
between the horizontal lines y = 1.8 and y = 2.2. Therefore we graph the curves
y=x—5x+6y=18andy= 2.2 near the point (1, 2) in Figure 8. Then we use
the cursor to estimate that the x-coordinate of the point of intersection of the line

y = 2.2 and the curve y = x> — 5x + 6is about 0.911. Similarly, y = x> — 5x + 6
intersects the line y = 1.8 when x =~ 1.124. So, rounding to be safe, we can say that

if 092 <x<1.12 then 18<x*—5x+6<22

This interval (0.92, 1.12) is not symmetric about x = 1. The distance from x = 1 to the
left endpoint is 1 — 0.92 = 0.08 and the distance to the right endpoint is 0.12. We can
choose & to be the smaller of these numbers, that is, 6 = 0.08. Then we can rewrite our
inequalities in terms of distances as follows:

if |x—1]/<008 then |(x* — 5x + 6) — 2| < 0.2
This just says that by keeping x within 0.08 of 1, we are able to keep f(x) within 0.2
of 2.

Although we chose 8 = 0.08, any smaller positive value of 8 would also have

worked. O

The graphical procedure in Example 1 gives an illustration of the definition for ¢ = 0.2,
but it does not prove that the limit is equal to 2. A proof has to provide a & for every .

In proving limit statements it may be helpful to think of the definition of limit as a chal-
lenge. First it challenges you with a number &. Then you must be able to produce a suit-
able 8. You have to be able to do this for every & = 0, not just a particular €.

Imagine a contest between two people, A and B, and imagine yourself to be B. Person
A stipulates that the fixed number L should be approximated by the values of f(x) to with-
in a degree of accuracy ¢ (say, 0.01). Person B then responds by finding a number & such
that if 0 < |x — a| < &, then | f(x) — L| < &. Then A may become more exacting and
challenge B with a smaller value of ¢ (say, 0.0001). Again B has to respond by finding a
corresponding 8. Usually the smaller the value of &, the smaller the corresponding value
of & must be. If B always wins, no matter how small A makes &, then lim,—. f° (x) = L.

I7 EXAMPLE 2 Prove that lin; 4x —5)="1.

SOLUTION
I. Preliminary analysis of the problem (guessing a value for 6). Lete be a'given
positive number. We want to find a number & such that

if 0<lx—3|<5 then |(4x—5)—7\<s

But|(4x — 5) — 7| = [4x — 12| = |4(x — 3)| = 4|x — 3|. Therefore we want

if 0<|x—3|<8 then 4x-3|<e
that is, if 0<|x—3|<8 then lx-3\<%

This suggests that we should choose 8= g/a.

2. Proof (showing that this & works). Given & > 0, choose §=¢g/4 If
0 < |x— 3| <, then

|(4x—5)—7|=l4x—12l=4[x—3|<48=4<§—>=8
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invention of calculus in the 17th cen-
followed a period of free development

2 the Bernoulli brothers and Euler were
ploit the power of calculus and boldly
consequences of this new and
mathematical theory without worrying
about whether their proofs were com-

Sth century, by contrast, was the Age of
sjpmematics. There was a movement to
10 the foundations of the subject—to
careful definitions and rigorous proofs.
forefront of this movement was the
ematician Augustin-Louis Cauchy
857), who started out as a military engj-
becoming a mathematics professor
Lauchy took Newton's idea of a limit,
s kept alive in the 18th century by the
atiematician Jean d’Alembert, and
8 precise. His definition of a limit
- "When the successive values
10 a variable approach indefinitely a
® 50 as to end by differing from it by
 0Ne wishes, this last is called the
;Ihe'omers." But when Cauchy used
In examples and proofs, he often
: epsilon inequalities similar to
i t~h|s sgction. A typical Cauchy proef
: “Designate by 8and & two very
“SIS:. " He used & because of the
wnidence between epsilon and the French
and 8 becayse delta corresponds to
Later, the German mathematician
*rass (1815-1897) stated the defini-
ATt exactly as in oy Definition 2.

that is,
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Thus
if 0<|xr-3|<8 then |@Ux-5-7|<e
Therefore, by the definition of a limit,
lirr31 4x -5 =17
This example is illustrated by Figure 9. a

Note that in the solution of Example 2 there were two stages—guessing and proving.
We made a preliminary analysis that enabled us to guess a value for 8. But then in the sec-
ond stage we had to go back and prove in a careful, logical fashion that we had made a
correct guess. This procedure is typical of much of mathematics. Sometimes it is neces-
sary to first make an intelligent guess about the answer to a problem and then prove that
the guess is correct.

The intuitive definitions of one-sided limits that were given in Section 2.2 can be pre-
cisely reformulated as follows.

DEFINITION OF LEFT-HAND LIMIT
lim f(x) = L
x—a~

if for every number & > 0 there is a number 8 > 0 such that

if a—-86<x<a then |fx) = L|<e

E DEFINITION OF RIGHT-HAND LIMIT
lim f(x) = L
if for every number & > 0 there is a number & > 0 such that
if

a<x<a+é then

[fx) —L|<e

Notice that Definition 3 is the same as Definition 2 except that x is restricted to lie in
the left half (a — 8, a) of the interval (@ — &, a + 8). In Definition 4, x is restricted to lie
in the right half (a, a + §) of the interval (a — 8, a + d).

K4 EXAMPLE 3 Use Definition 4 to prove that lil})l* Jx =o.

SOLUTION

I. Guessing a value for 5. Let & be a given positive number. Here @ = 0 and L = 0,
S0 we want to find a number & such that

if 0<x<$é then

|[Vx -0 <e
Vx<e

if 0<x<$§ then
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or, squaring both sides of the inequality \/; < g, we get
if 0<x<$é then x < &

This suggests that we should choose 8 =¢g2
2. Showing that this & works. Given & > 0,let & = g2 If 0 < x < &. then

ST B=y=c
SO |Vx —0|<e
According to Definition 4, this shows that lim,o vx = 0.

EXAMPLE 4 Prove that “"1 ¥ =09,

SOLUTION
I. Guessing a value for 8. Lete > 0 be given. We have to find a number 6 > 0
such that
if 0<|x—3|<d& then |x*—9|<e

To connect | x> — 9| with |x — 3| we write |x2 = 9| = | (x + 3)(x — 3)|. Then we
want
if 0<|x—3[<d then |x+3]||x—3|<e

Notice that if we can find a positive constant C such that |x + 3| < C, then
|x+ 3||x = 3| <Clx - 3|

and we can make C|x — 3| < & by taking [x — 3| < g/C=34.
We can find such a number C if we restrict x to lie in some interval centered at 3.
In fact, since we are interested only in values of x that are close to 3, it is reasonable
to assume that x is within a distance 1 from 3, that is, |x—3|<1.Then2 <x< 4,
s05 < x + 3 < 7. Thus we have |x + 3| <7,andso C = Tisa suitable choice for
the constant.
But now there are two restrictions on [x — 3, namely

lx— 3| <1 and |x—3\<(—

\x|07

To make sure that both of these inequalities are satisfied, we take & tc be the smaller
the two numbers 1 and &/7. The notation for this is & = min{l, &/7}.

2. Showing that this 8 works. Given & > 0, let & = min{l, &/7}. If 0 < |x - 3|
| then |[x — 3| <1 > 2<x<4 = |x + 3| <7 (as in part 1). We also have
‘ |x — 3| < ¢&/7,s0

x2- 9| =|x+3]|x=3]<T-Z=e

This shows that lim, .3 x* = 9.

As Example 4 shows, it is not always easy to prove that limit statements ar
| using the &, 8 definition. In fact, if we had been given a more complicated functiol
| as f(x) = (6x> — 8x + 9)/(2x> — 1), a proof would require a great deal of inge




® Triangle Inequality
la+b|<|a|l+|b]

{See Appendix A )
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Fortunately this is unnecessary because the Limit Laws stated in Section 2.3 can be proved
using Definition 2, and then the limits of complicated functions can be found rigorously
from the Limit Laws without resorting to the definition directly.

For instance, we prove the Sum Law: If lim,—.,f(x) = L and lim,_., g(x) = M both
exist, then

lim [£(x) + g(0)] =L + M
The remaining laws are proved in the exercises and in Appendix F.
PROOF OF THE SUM LAW Let &€ > 0 be given. We must find § > 0 such that
if 0<|x—al<é then |f(x)+g(x)—(L+M)[<s
Using the Triangle Inequality we can write
| 7G) +9() = (L + M)| = [(f(x) = L) + (g(x) = M)
< |[f(x) = L] + [g(x) — M|

We make |f(x) + g(x) — (L + M) | less than & by making each of the terms [ f(x) — L|
and | g(x) — M| less than /2.
Since £/2 > 0 and lim, ., f(x) = L, there exists a number &, > 0 such that

if O0<|x—a|<8  then |f(x)~~L]<§

Similarly, since lim, ., g(x) = M, there exists a number 8, > 0 such that

if 0<|r—a|<8, then |g(x)-M{<§

Let 6 = min{8,, §,}. Notice that

if 0<|x—a|<§ then 0<|x—a|<8 and 0<|x—a| <&,

and so lFf&) - L] < g and lg(x) — M| <§

Therefore, by (5),
|f(x) +9(x0) = (L + M)| < |f(x) — L| + |g(x) — M|
<

=g

| ®

o
2
To summarize,

if 0<|x—a|<§ then | f(x) +g9(x) = (L+M)|<e
Thus, by the definition of a limit,

lim [f(x) + g()] =L + M a
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‘]

a—=9 a+d

FIGURE 10

FIGURE 11

INFINITE LIMITS

Infinite limits can also be defined in a precise way. The following is a precise version of
Definition 4 in Section 2.2.

. 4

[6] DEFINITION Let f be a function defined on some open interval that contains
the number a, except possibly at a itself. Then

lim f(x) =

x—a
means that for every positive number M there is a positive number & such that

if 0<|x—a|l<d then flx) >M

This says that the values of f (x) can be made arbitrarily large (larger than any given
number M) by taking x close enough to a (within a distance 8, where & depends on M, but =
with x # a). A geometric illustration is shown in Figure 10. :

Given any horizontal line y = M, we can find a number & > 0 such that if we restric
1o lie in the interval (@ — 8, a + &) butx # a, then the curve y = f(x) lies above the line &
y = M. You can see that if a larger M is chosen, then a smaller 8§ may be required.

1
7 EXAMPLE 5 Use Definition 6 to prove that lirr(l) e d= 00,
=0 X

SOLUTION Let M be a given positive number. We want to find a number & such that
if 0<|x|<é then 1/x*>M

1

M<—ﬁ4=

1 1
But —>M = x2<—M e

So if we choose 6 = 1/J/M and 0 < |x| < 8= 1/J/M, then 1/x* > M. This shows that
1/x? —>»asx— 0. a

Similarly, the following is a precise version of Definition 5 in Section 2.2. It is illus-
trated by Figure 11.

DEFINITION Let f be a function defined on some open interval that contains
the number a, except possibly at a itself. Then

lim f(x) = —

x—a

means that for every negative number N there is a positive number & such that

i

if O0<|x—a|<d then f(x) <N
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EXERCISES

Q}se the given graph of flx) = 1/x to find a number & such

mat
< 0.2

1
if ]x—21<5 then ~¥—0.5

A4 5. Use a graph to find a number & such that

if x—% <5 then |tanx—1/<02
4 6. Use a graph to find a number & such that
. 2x
if |x—1/<8 then 5 -04|<0.1
x*+4

2. Use the given graph of f to find a number & such that

P4 7. For the limit

0<|x—5|<8& then |f(x) — 3] <06
lim (4 + x — 3x%) =2

x=1

illustrate Definition 2 by finding values of & that correspond

toe=1and e =0.1
79 8. For the limit
lim 4x + 1 45
1 = 4.
4

=2 )X —

illustrate Definition 2 by finding values of & that correspond

toe =05and e =0.1.

v = o, illustrate Definition 6 by

A4 9. Given that limy .72 tan”
= 1000 and

finding values of & that correspond to (a) M
(b) M = 10,000.

if  |x—4|<& then |Vx—2|<04
10. Use a graph to find a number & such that

.X2

if 5<x<5+8 then \/——5
o

s required to manufacture a circular metal disk

> 100

11. A machinist i
with area 1000 cm’.
(a) What radius produces such a disk?
(b) If the machinist is allowed an error tolerance of =5 cm?
in the area of the disk, how close to the ideal radius in
Bl e oive - part (a) must the machinist control the radius?
given graph of f(x) = x” to find a number & such that (c) In terms of the &, & definition of lim,_., f(x) = L, what
is x? What is f(x)? What is a? What is L? What value of &

is given? What is the corresponding value of 67

if  |x—1|<8 then |x*—1[<3

e R SR B k]
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{32 12. A crystal growth furnace is used in research to determine how

best to manufacture crystals used in electronic components for
the space shuttle. For proper growth of the crystal, the temper-
ature must be controlled accurately by adjusting the input
power. Suppose the relationship is given by

T(w) = 0.1w? + 2.155w + 20

where T is the temperature in degrees Celsius and w is the

power input in watts.

(a) How much power is needed to maintain the temperature
at 200°C?

(b) If the temperature is allowed to vary from 200°C by up
to +1°C, what range of wattage is allowed for the input
power?

(c) In terms of the &, & definition of lim,_., f(x) = L, what
is x? What is f(x)? What is a? What is L? What value of
¢ is given? What is the corresponding value of 67

13. (a) Find a number & such that if |x — 2| < §, then
|4x — 8| < g, where £ = 0.1.
(b) Repeat part (a) with & = 0.01.

14. Given that lim,—.,(5x — 7) = 3, illustrate Definition 2 by
finding values of & that correspond to £ = 0.1, & = 0.05,
and ¢ = 0.01.

15-18 Prove the statement using the &, 8 definition of limit and
illustrate with a diagram like Figure 9.

16. lim (3x +3) =2

I5. li,m] 2x+3)=5 n

7] lim (1 - 4x) =13 18. lim (7 — 3%) = =5

19-32 Prove the statement using the &, 8 definition of limit.

15, iy v 30, i (X 43 | =2
= R T\ T 2
x2+x—6 9 — 4x?
lim————=5 22. lim ——=6
2 }"B X— 2 xl}{r}.s 3+ 2x
23. limx=a 24. limc=c¢
25]limx*=0 26. 1in3)x~‘=0

x—0 x=>
27. lin})|x|:0 28. lim V9—x=0
@Elin} (x2—4x+5)=1 30. linl(xl +x—4)=28
BL lim_ x2-1)=3 32. lirr;x3 =38

33. Verify that another possible choice of 6 for showing that
lim,_;x* = 9 in Example 4 is § = min{2, &/8}.

34. Verify, by a geometric argument, that the largest possible
choice of & for showing that lim,—; x> = 9 is
6=+9+¢e —3.

[(s]35. (a) For the limit lim,—, (x> + x + 1) = 3, use a graph to find

a value of & that corresponds to € = 0.4.

(b) By using a computer algebra system to solve the cubic
equation x> + x + 1 = 3 + ¢, find the largest possible
value of & that works for any given &€ > 0.

(c) Put ¢ = 0.4 in your answer to part (b) and compare with
your answer to part (a).

1 1
36. Prove that lim — = —.
-2 X 2

37, Prove that lim v/x = v/a if a > 0.

[Hint: Usel\/— = \/E|= —\/‘—;—_‘__q\/%.]

38. If H is the Heaviside function defined in Example 6 in Sec-
tion 2.2, prove, using Definition 2, that lim,_.o H(f) does not
exist. [Hint: Use an indirect proof as follows. Suppose that
the limit is L. Take & = 3 in the definition of a limit and try to
arrive at a contradiction.]

39. If the function f is defined by

0 if xis rational
fx) = e
1 if xis irrational
prove that lim,_.o f(x) does not exist.

40. By comparing Definitions 2, 3, and 4, prove Theorem 1 in
Section 2.3.

41. How close to —3 do we have to take x so that

1
(—+—%); > 10,000
X 4

1
42. Prove, using Definition 6, that lim ——— = ®
rove, using Definition at lim, x+3)

[43.] Prove that lim e
=17 (x + 1)3

44. Suppose that lim, ., f(x) = % and lim,—, g(x) = ¢, where ¢
is a real number. Prove each statement.

(@) lim [£(x) + g()] = <=
(b) lim [£(x)g()] = if ¢ >0

(© lim [f(Dg(9)] =~ if ¢ <0
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CONTINUITY

q As illustrated in Figure 1, if £ is continuous,

‘then the points (x, £(x)) on the graph of f

* approach the point (a, f(a)) on the graph. So
. there is no gap in the curve.

ftx)

~ approaches +

fla).

* FIGURE |

0

y=flx)

fla)

A ()
X

— (Y is

As x approaches a,

We noticed in Section 2.3 that the limit of a function as x approaches a can often be found
simply by calculating the value of the function at a. Functions with this property are called
continuous at a. We will see that the mathematical definition of continuity corresponds
closely with the meaning of the word continuity in everyday language. (A continuous
process is one that takes place gradually, without interruption or abrupt change.)

[I] DEFINITION A function f is continuous at a number a if

lim £(x) = f(a)

Notice that Definition I implicitly requires three things if f is continuous at a:
I. f(a) is defined (that is, a is in the domain of f)
2. lim f(x) exists

3. lim f() = f(a)

The definition says that f is continuous at a if f(x) approaches f(a) as x approaches a.
Thus a continuous function f has the property that a small change in x produces only a
small change in f(x). In fact, the change in f(x) can be kept as small as we please by keep-
ing the change in x sufficiently small.

If f is defined near a (in other words, f is defined on an open interval containing a,
except perhaps at a), we say that f is discontinuous at a (or f has a discontinuity at q) if
f is not continuous at a.

Physical phenomena are usually continuous. For instance, the displacement or velocity
of a vehicle varies continuously with time, as does a person’s height. But discontinuities
do occur in such situations as electric currents. [See Example 6 in Section 2.2, where the
Heaviside function is discontinuous at 0 because lim,_. H(z) does not exist. ]

Geometrically, you can think of a function that is continuous at every number in an
interval as a function whose graph has no break in it. The graph can be drawn without
removing your pen from the paper.

EXAMPLE | Figure 2 shows the graph of a function f. At which numbers is f discontinu-
ous? Why?

SOLUTION It looks as if there is a discontinuity when a = 1 because the graph has a break
there. The official reason that fis discontinuous at 1 is that £(1) is not defined.

The graph also has a break when a = 3, but the reason for the discontinuity is differ-
ent. Here, f(3) is defined, but lim,_.; f(x) does not exist (because the left and right limits
are different). So fis discontinuous at 3.

What about a = 5? Here, f(5) is defined and lim, s f(x) exists (because the left and
right limits are the same). But

lim (x) # £(5)

So f is discontinuous at 5. O

Now let’s see how to detect discontinuities when a function is defined by a formula.

S P A S N A

S S e

B o
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7 EXAMPLE 2 Where are each of the following functions discontinuous?

2 ] .
@ fly = 22 ®) f) = {2 Tx#0
1 if x=20
X*=-x-2 ,
©fx)={ x—2 1Tx*2 d) f(x) = [«]
! 1 if x=2
: SOLUTION

(a) Notice that f(2) is not defined, so fis discontinuous at 2. Later we’ll see why f is
continuous at all other numbers.

(b) Here f(0) = 1 is defined but
: o1
fizy 709 = lim 7
does not exist. (See Example 8 in Section 2.2.) So fis discontinuous at 0.
(c) Here f(2) = 1 is defined and
x2—x-2 x—=2)(x+1)

¥IIT:1 f(X) = %1—12 x—2 B xh—r>r21 x—2

= lim (x + 1) = 3

exists. But

lim £(2) # £(2)

so f is not continuous at 2.

(d) The greatest integer function f(x) = [x] has discontinuities at all of the integers
because lim, ., [x] does not exist if 7 is an integer. (See Example 10 and Exercise 49
Section 2.3.)

Figure 3 shows the graphs of the functions in Example 2. In each case the graph c:
be drawn without lifting the pen from the paper because a hole or break or jump occurs
the graph. The kind of discontinuity illustrated in parts (a) and (c) is called remova
because we could remove the discontinuity by redefining f at just the single numbei
[The function g(x) = x + 1is continuous.] The discontinuity in part (b) is called an i
nite discontinuity. The discontinuities in part (d) are called jump discontinuities beca
the function “jumps” from one value to another.

\J _\'r Yy
&———O
&——0
1 1 ® 1 e——o
> s — ————+t —>
X 0 X 0 1 2 X 0 1 2 3 X
{ 5 T X2—x=2 .
| — ifx#0 =272 ifx#
| @ fl)=*—2-2 ®fx)=1 2 " ©ft={ x—2 T**2 A fx)=[x]
T 1 ifx=0 1 if x=2

FIGURE 3 Graphs of the functions in Example 2

N ——
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DEFINITION A function f is continuous from the right at a number a if

lim £(x) = f(@)
and f is continuous from the left at a if

lim f£(x) = f(a)

EXAMPLE 3 At each integer n, the function f(x) = [x] [see Figure 3(d)] is continuous
from the right but discontinuous from the left because

lim flx) = lim [x] = n=f(n)

but lim f(x) = lim [x]=n—1#f(n) a

DEFINITION A function f is continuous on an interval if it is continuous at
every number in the interval. (If f is defined only on one side of an endpoint of the
interval, we understand continuous at the endpoint to mean continuous from the

| right or continuous from the left.) J P
l _

EXAMPLE 4 Show that the function f(x) = 1 — 4/1 — x? is continuous on the
interval [—1, 1].

SOLUTION If —1 < a < 1, then using the Limit Laws, we have

lim f(x) = lim (1 — V1 — x?)

Xx—>a x—a

1 — lim +/1 — x2 (by Laws 2 and 7)

x—a

=1- /lim(l —x2?)  (bylD)
=1 —41—-a? (by 2,7, and 9)
= f(a)
Thus, by Definition 1, f is continuous at a if —1 < a < 1. Similar calculations show that

lim f(x)=1=f(-1) and  lim flx) =1=5(1)

I

so f is continuous from the right at —1 and continuous from the left at 1. Therefore,
according to Definition 3, f is continuous on [—1, 1].
The graph of f is sketched in Figure 4. It is the lower half of the circle

X+ (y—-17=1 a
Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as

we did in Example 4, it is often convenient to use the next theorem, which shows how to
build up complicated continuous functions from simple ones.
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[4] THEOREM If f and g are continuous at ¢ and ¢ is a constant, then the follow-
ing functions are also continuous at a:

I. f+g 2. f—g 3. ¢f

4. fg 5. ﬁ if g(a) # 0

PROOF Each of the five parts of this theorem follows from the corresponding Limit Law
in Section 2.3. For instance, we give the proof of part 1. Since f and g are continuous @
a, we have

lim f(x) = f(a) and liin g(x) = g(a)

Therefore
lim (f + g)(x) = lim [f(x) + g(x)]
= lim f (x) + lim g(x) ~ (by Law 1)
= f(a) + g(a)
=(f+ 9)a)

This shows that f + g is continuous at a.

It follows from Theorem 4 and Definition 3 that if f and g are continuous on an int
val, then so are the functions f + g, f — g, cf fg, and (if g is never 0) f/g. The followi
theorem was stated in Section 2.3 as the Direct Substitution Property.

THEOREM

(a) Any polynomial is continuous everywhere; that is, it is continuous on
R = (=0, o).

(b) Any rational function is continuous wherever it is defined; that is, it is contin-
uous on its domain.

PROOF
(a) A polynomial is a function of the form

P(x) = cax" + oo™ + - X +

where ¢, ci, . . ., ¢, are constants. We know that

lim ¢y = co (by Law 7)

x—a

and lim x™ = a™ m=1,2,...,n (by 9)

x—a

This equation is precisely the statement that the function f(x) = x™ is a continuous

function. Thus, by part 3 of Theorem 4, the function g(x) = cx" is continuous. Since .

is a sum of functions of this form and a constant function, it follows from part 1 of
Theorem 4 that P is continuous.




P(cos 6, sin )

FIGURE 5

j :nAno!her way to establish the limits in (6] is
= S8 the Squeeze Theorem with the inequality

S0 < 9(for 9> i .
. Wh
e ). which is proved in
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(b) A rational function is a function of the form

P(x)
Q(x)

flx) =

where P and Q are polynomials. The domain of f is D = {x € R|Q(x) # 0}. We know
from part (a) that P and Q are continuous everywhere. Thus, by part 5 of Theorem 4,

f is continuous at every number in D. d

As an illustration of Theorem 3, observe that the volume of a sphere varies continuously
with its radius because the formula V(r) = 57r® shows that V is a polynomial function
of r. Likewise, if a ball is thrown vertically into the air with a velocity of 50 ft/s, then the
height of the ball in feet ¢ seconds later is given by the formula h = 507 — 16¢>. Again this
is a polynomial function, so the height is a continuous function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits very
quickly, as the following example shows. Compare it with Example 2(b) in Section 2.3.

) x4+ 2xr-1
EXAMPLE 5 Find lm —
x—>=2 5= 3x
SOLUTION The function
x4+ 2xr -1
) =

S =.3x%

is rational, so by Theorem 5 it is continuous on its domain, which is [x |x # %]
Therefore

r x3+2x2—1_l, ) = (=2
,r»l»n—lz 5 — 3x ,v—l-mzfx /
—2Y¥ 4 S, ) v
R o el S .
5— 3(—2) 11

It turns out that most of the familiar functions are continuous at every number in their
domains. For instance, Limit Law 10 (page 79) is exactly the statement that root functions
are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure 18 in
Section 1.2), we would certainly guess that they are continuous. We know from the defini-
tions of sin 0 and cos 6 that the coordinates of the point P in Figure 5 are (cos 6, sin ). As
6 — 0, we see that P approaches the point (1, 0) and so cos # — 1 and sin 6 — 0. Thus

3 lim cos 6 = 1 lim sin 6 = 0
6—0 6—0
Since cos 0 = 1 and sin 0 = 0, the equations in (6) assert that the cosine and sine func-
tions are continuous at 0. The addition formulas for cosine and sine can then be used to
deduce that these functions are continuous everywhere (see Exercises 56 and 57).
It follows from part 5 of Theorem 4 that

sin x

fanx =
COS X

4 S o s

o R e A e

e
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FIGURE 6 y=tanx

|
H
i
!
!
!
!
|

1s continuous except where cos x = 0. This happens when x is an odd integer multipl
/2, so y = tan x has infinite discontinuities when x = *7/2, 231/2, +57/2, and s
(see Figure 6).

(7] THEOREM The following types of functions are continuous at every number in
their domains:

rational functions

root functions

‘j polynomials
l' trigonometric functions

EXAMPLE 6 On what intervals is each function continuous?

X2+ 2x + 17

(@) f(x) =x'%—2x¥ + 75 (b) g(x) = o
5 A | X%+ 1
Sl

SOLUTION
(a) fis a polynomial, so it is continuous on (—oo, ) by Theorem 5(a).

(b) g is a rational function, so by Theorem 5(b), it is continuous on its domain, which
D = {x|x* = 1 # 0} = {x|x # =1}. Thus g is continuous on the intervals (—oo, -1),
(=1, 1), and (1, ).

(c) We can write h(x) = F(x) + G(x) — H(x), where

F(x) = x

F is continuous on [0, ) by Theorem 7. G is a rational function, so it is continuous
everywhere except when x — 1 = 0, that is, x = 1. H is also a rational function, but it
denominator is never 0, so H is continuous everywhere. Thus, by parts 1 and 2 of The«
rem 4, h is continuous on the intervals [0, 1) and (1, ).

. sin x
EXAMPLE 7 Evaluate lim

X

2+ cosx

SOLUTION Theorem 7 tells us that y = sin x is continuous. The function in the denomi-
nator, y = 2 + cos x, is the sum of two continuous functions and is therefore continu-
ous. Notice that this function is never 0 because cos x = —1 for all x and so
2 + cos x > 0 everywhere. Thus the ratio

sin x

flx) =

2+ cosx
is continuous everywhere. Hence, by the definition of a continuous function,

sin 71 0

= lim f(x) = f(m)

X=>T

lim

x—72 + cosx 2+ cos

Another way of combining continuous functions f and g to get a new continuous fu
tion is to form the composite function fo g. This fact is a consequence of the follow
theorem.




theorem says that a limit symbol can be

fshrough a function symbol if the function
ot

ar of these two symbols can be reversed.
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and the limit exists. In other words,

THEOREM If f is continuous at b and lim g(x) = b, then lim f(g(x)) = f(b).
In other words, e e

lim f(g(x)) = f(lim 9(x)

Intuitively, Theorem 8 is reasonable because if x is close to a, then g(x) is close to b,
and since f is continuous at b, if g(x) is close to b, then f(g(x)) is close to f(b). A proof
of Theorem 8 is given in Appendix F.

Let’s now apply Theorem 8 in the special case where f(x) = {/x , with n being a posi-
tive integer. Then

F(g(x) = /g(x)
and f(}lf}l g(x)) = y/lim g(x)

If we put these expressions into Theorem 8, we get

lim {/g(x) = J/lim g(x)

and so Limit Law 11 has now been proved. (We assume that the roots exist.)

THEOREM If g is continuous at a and f is continuous at g(a), then the compos-
ite function fo g given by (f° g)(x) = f(g(x)) is continuous at a.

This theorem is often expressed informally by saying “a continuous function of a con-
tinuous function is a continuous function.”

PROOF Since g is continuous at a, we have

lim g(x) = g(a)

Since f is continuous at b = g(a), we can apply Theorem 8 to obtain

lim f(g(x)) = f(g(a))

which is precisely the statement that the function h(x) = f(g(x)) is continuous at a; that
is, f© g is continuous at a. B

I7 EXAMPLE 8 Where are the following functions continuous?
1

(a) h(x) = sin(x?) (b) Flx) = N
SOLUTION
(a) We have h(x) = f(g(x)), where

g(x) = x* and f(x) = sinx

Now g is continuous on R since it is a polynomial, and f is also continuous everywhere.
Thus i = f o g is continuous on R by Theorem 9.

(b) Notice that F can be broken up as the composition of four continuous functions:

F=fogohok or F(x) = f(g(h(k(x))))

where f(x) = % gx)=x—4 h(x) = Jx k(x) = x>+ 7
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FIGURE 7
y
fla) i
y = f(x)
N y=N
fib)
o o H
FIGURE 8

We know that each of these functions is continuous on its domain (by Theorems 5
so by Theorem 9, F is continuous on its domain, which is

{x ER|Vx2+7 # 4} = {x|x# £3} = (=0, =3) U (-3, 3) U (3, =)

An important property of continuous functions is expressed by the following tl
whose proof is found in more advanced books on calculus.

THE INTERMEDIATE VALUE THEOREM Suppose that f is continuous on the
closed interval [a, b] and let N be any number between f(a) and f(b), where
f(a) # f(b). Then there exists a number c in (a, b) such that fle) = N.

The Intermediate Value Theorem states that a continuous function takes on ever
mediate value between the function values f(a) and f(b). It is illustrated by Figure
that the value N can be taken on once [as in part (a)] or more than once [as in part

y b
f(b) = f(b)
. y=f)

N

fla) y = f(x) fla) M

|

— 5

0 a ¢ b ¥ 0 a ¢ ¢ ¢ b
(@) (b)

If we think of a continuous function as a function whose graph has no hole o
then it is easy to believe that the Intermediate Value Theorem is true. In geometric
says that if any horizontal line y = N is given between y = f(a) and y = f(b) as
ure 8, then the graph of f can’t jump over the line. It must intersect y = N som

It is important that the function f in Theorem 10 be continuous. The Intermediat
Theorem is not true in general for discontinuous functions (see Exercise 44).

One use of the Intermediate Value Theorem is in locating roots of equations a
following example.

2 EXAMPLE 9 Show that there is a root of the equation

4x3 —6x2+3x—2=0

between 1 and 2.

SOLUTION Let f(x) = 4x° — 6x* + 3x — 2. We are looking for a solution of the giv
equation, that is, a number ¢ between 1 and 2 such that f(c) = 0. Therefore we ta
a=1,b=2,and N = 0 in Theorem 10. We have

f)=4-6+3-2=-1<0

and f@Q)=32-24+6-2=12>0
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Thus f(1) < 0 < £(2); that is, N = 0 is a number between f(1) and £(2). Now f is
continuous since it is a polynomial, so the Intermediate Value Theorem says there
is a number ¢ between 1 and 2 such that f(c) = 0. In other words, the equation
4x* — 6x” + 3x — 2 = 0 has at least one root ¢ in the interval (1, 2).

In fact, we can locate a root more precisely by using the Intermediate Value Theorem
again. Since

f(1.2) = -0.128 < 0 and f(1.3) = 0.548 > 0
a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,
f(1.22) = —0.007008 < 0 and f(1.23) = 0.056068 > 0

so a root lies in the interval (1.22, 1.23). O

We can use a graphing calculator or computer to illustrate the use of the Intermediate
Value Theorem in Example 9. Figure 9 shows the graph of f in the viewing rectangle
[—1, 3] by [—3, 3] and you can see that the graph crosses the x-axis between 1 and 2. Fig-

is continuous at the number 4.

graph?

1.3 : : o
ure 10 shows the result of zooming in to the viewing rectangle [1.2, 1.3] by [—0.2, 0.2].
In fact, the Intermediate Value Theorem plays a role in the very way these graphing
devices work. A computer calculates a finite number of points on the graph and turns on *
the pixels that contain these calculated points. It assumes that the function is continuous
Beicunc 10 and takes on all the intermediate values between two consecutive points. The computer
: therefore connects the pixels by turning on the intermediate pixels.
EXERCISES
I. Write an equation that expresses the fact that a function f 4. From the graph of g, state the intervals on which gis

2. If f is continuous on (=00, ), what can you say about its

3] (a) From the graph of £, state the numbers at which f is dis- .

continuous.

continuous and explain why. ! t ' x
(b) For each of the numbers stated in part (a), determine = e 2/ 4 & .
Wwhether £ is continuous from the right, or from the left,
or neither.
y 5. Sketch the graph of a function that is continuous everywhere
except at x = 3 and is continuous from the left at 3.
" \ 6. Sketch the graph of a function that has a jump discontinuity at
;// / \ x = 2 and a removable discontinuity at x = 4, but is continu-
// \\ \ ous elsewhere.
o - 0 ! = (7. A parking lot charges $3 for the first hour (or part of an hour)
2 4 6 : ; v
and $2 for each succeeding hour (or part), up to a daily maxi-
mum of $10.
(a) Sketch a graph of the cost of parking at this lot as a func-
tion of the time parked there.
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(b) Discuss the discontinuities of this function and their
significance to someone who parks in the lot.

8. Explain why each function is continuous or discontinuous.

(a) The temperature at a specific location as a function of
time

(b) The temperature at a specific time as a function of the dis-
tance due west from New York City

(c) The altitude above sea level as a function of the distance
due west from New York City

(d) The cost of a taxi ride as a function of the distance trav-
eled

(e) The current in the circuit for the lights in a room as a
function of time

9. If f and g are continuous functions with f(3) =5 and
lim,—3 [2f(x) — g(x)] = 4, find ¢(3).

10-12 Use the definition of continuity and the properties of lim-
its to show that the function is continuous at the given number a.

10. f(x) =x*+ 7T —x, a=4
L] f(x) = (x + 2x%)*, a= —1

2t — 3¢?
12. h(r) = TI]’ a=1

13-14 Use the definition of continuity and the properties of limits
to show that the function is continuous on the given interval.

2x+ 3
x—2"

14. g(x) =23 —x, (o, 3]

13. f(x) = (2, )

-_—

15-20 Explain why the function is discontinuous at the given
number a. Sketch the graph of the function.

1

15, f(x) = ————— =1
L e

6. fo) ={x—1 "% a=1
2 if x=1

17, f(x) = 1-x% ifx<]1 e

TN s &5
XX # 1

£

Blfx={x-1 *~* a=1

1 if x=1

CoS x if x<0
19. f(x) =40 if x=0 a=0
1-x% if x>0

2x* — 5x — 3 if x5 3
x—3 b a=3
6 if x=3

- OO

21-28 Explain, using Theorems 4, 5, 7, and 9, why the function is
continuous at every number in its domain. State the domain.

20. f(x) =

X
x2+5x+6
23. R(x) = x4+ 2x — 1

22. G(x) = Yx (1 + x?)
sin x
x+1

26. h(x) = tan 2x

28. F(x) = sin(cos(sin x))

2l. F(x) =
24. h(x) =

25. h(x) = cos(l — x?)
27] F(x) = /x sinx

4 29-30 Locate the discontinuities of the function and illustrate by

graphing.
1

—_— 30. y =1t b
1 + sinx ) an\/:c—

29. y=

31-34 Use continuity to evaluate the limit.

54+ Jx

I li
3 xl—rg V5 +x

33. lin} x cos’x
4

x—>,

B2.] lim sin(x + sin x)

34. lim (x*=3x+ 1)

35-36 Show that f is continuous on (=00, ).
x% if x< 1

5. f(x) =

a0 o {\/I if x> 1

sinx if x < /4
cosx if x = 7/4

36. f(x) = {

37-39 Find the numbers at which f is discontinuous. At which of
these numbers is f continuous from the right, from the left, or nei-
ther? Sketch the graph of f.

1+x?2 ifx<o0
37. fx)=y2—-x if0<x<?
(x =2 it x>0

b o o | if x=<1
38. f(x) =41/x ifl<x<3

Vvx—=3 ifx=3

x+2 ifx<0
B9 f(x) = { 2x? if0sxs|
2—5 1fx>1




“The gravitational force exerted by the earth on a unit mass at a
distance r from the center of the planet is

GM
—R3—’ if r<R
F(r) =
) GM .
= if r=R
7

. where M is the mass of the earth, R is its radius, and G is the
gravitational constant. Is F a continuous function of r?

41, For what value of the constant ¢ is the function f continuous
o (>, ©)?
if x<2

x> =icx if x=2

o= {wzcz + 2x

42. Find the values of a and b that make f continuous everywhere.

e if x<2

won ) x—=2

f) = ax’*—bx+3 if2<x<3
2x—a+b if x=3

43, Which of the following functions f has a removable disconti-
nuity at a? If the discontinuity is removable, find a function g
that agrees with f for x # a and is continuous at a.

@0 =" a-1
Ot e R

x—2
(€) f(x) = [sin x],

a=rm
44. Suppose that a function f is continuous on [0, 1] except at

- 025 and that £(0) = 1 and f(1) = 3. Let N = 2. Sketch two
Possible graphs of f, one showing that f might not satisfy
the conclusion of the Intermediate Value Theorem and one
showing that f might still satisfy the conclusion of the

Intermediate Value Theorem (even though it doesn’t satisfy the
hypothesis).

45,

If f(x) o x* + 10 sin x, show that there is a number ¢ such
that f(c) = 1000.

SUPP(_)SS J is continuous on [1, 5] and the only solutions of the
€quation f(x) = 6 are x = 1 and x = 4. If f(2) = 8, explain
Wwhy £(3) > 6. :
47-50 ). :
";’msu_ Use l.hc Intermediate Value Theorem to show that there is a
of the given equation in the specified interval.

o
" tx-3=0 (1,2) 48 x=1-x 1)
(0, 1.4)

9. cosx - x, (0,1)

——

50. tanx = 2x,
e —
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51-52 (a) Prove that the equation has at least one real root.
(b) Use your calculator to find an interval of length 0.01 that con-
tains a root.

52. x> —x*+2x+3=0

51. cos x = x°

53-54 (a) Prove that the equation has at least one real root.
(b) Use your graphing device to find the root correct to three deci-
mal places.

1
53. x> —x>—4=0

x+3

54. (/x —5 =

55. Prove that f is continuous at a if and only if
lim f(a + h) = f(a)

56. To prove that sine is continuous, we need to show that
lim,., sin x = sin a for every real number a. By Exercise 55
an equivalent statement is that

Ilim sin(l@ + h) = sina
h—0

Use (6) to show that this is true.

57. Prove that cosine is a continuous function.

58. (a) Prove Theorem 4, part 3.
(b) Prove Theorem 4, part 5.

59. For what values of x is f continuous?

ﬂﬂ=$

1 if xis irrational

if x is rational

60. For what values of x is g continuous?

g(x) = {O
X

[61.] Is there a number that is exactly 1 more than its cube?

if x is rational
if x is irrational

62. If a and b are positive numbers, prove that the equation

a b

=0
x*+2x2—-1 x*+x-2

has at least one solution in the interval (—1, 1).
63. Show that the function
x*sin(1/x) if x#0
flx) = heT
0 if x=0
is continuous on (—oo, ©),

64. (a) Show that the absolute value function F(x) = | x| is contin-
uous everywhere.
(b) Prove that if f is a continuous function on an interval, then

sois | f|.
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65. A Tibetan monk leaves the monastery at 7:00 AM and takes his

[l CHAPTER 2 LIMITS

(c) Is the converse of the statement in part (b) also true? In
other words, if | f | is continuous, does it follow that f is
continuous? If so, prove it. If not, find a counterexample.

usual path to the top of the mountain, arriving at 7:00 pM. The

2 REVIEW

following morning, he starts at 7:00 AM at the top and takes
same path back, arriving at the monastery at 7:00 pm. Use t
Intermediate Value Theorem to show that there is a point or
path that the monk will cross at exactly the same time of da
on both days.

CONCEPT CHECK

I. Explain what each of the following means and illustrate with a 4. State the following Limit Laws.
sketch. (a) Sum Law (b) Difference Law
(a) lim f(x) = L (b) lim f(x)=L (¢) Constant Multiple Law (d) Product Law
e _ e - (e) Quotient Law (f) Power Law
© \]E?* f) =L @ !m} flx) = (g) Root Law
(€ }l_n}, fla) = —e 5. What does the Squeeze Theorem say?
2. Describe several ways in which a limit can fail to exist. 6. (a) What does it mean for f to be continuous at a?
Illustrate with sketches. (b) What does it mean for f to be continuous on the interv:
— 9 .,
3. What does it mean to say that the line x = a is a vertical : OOI’,OO);) YHate youaay boulthe ptaplt of ki€
asymptote of the curve y = f(x)? Draw curves to illustrate the e
various possibilities. 7. What does the Intermediate Value Theorem say?
TRUE-FALSE QUIZ
Determine whether the statement is true or false. If it is true, explain why. 8. If lim,_o f(x) = « and lim,—¢ g(x) = o, then
If it is false, explain why or give an example that disproves the statement. lim, o [ f(x) — g(x)] = 0.
2 8 2 i =1i i f yi==
I lim X = B~ — Tifii 9. If the line x = 1 is a vertical asymptote of y = f(x), then f
—a\x—4 x—4 Fo; X 5 x4 x — 4 not defined at 1.
PR lim (x2 + 6x — 7) 10. If £(1) > 0 and f(3) < 0, then there exists a number ¢
2. lim - 2 — 2] between 1 and 3 such that f(c) = 0.
Tio1 x4+ 5x—6  lim(x?+5x—6
* lim (x + 5x = 6) I. If £ is continuous at 5 and £(5) = 2 and f(4) = 3, then
lim,—, f(4x? — 11) = 2.
- lim (x — 3) 2 fl
3. = 22l 12. If f is continuous on [—1, 1] and f(—1) = 4 and f(1) = 3

;
X+ 2x— 4 lim (x> + 2x — 4)

. Iflim,s f(x) = 2 and lim,_sg(x) = 0O, then

lim, s [ f(x)/g(x)] does not exist.

If lim,—s f(x) = 0 and lim,sg(x) = 0, then
lim,_s [ f(x)/g(x)] does not exist.

If lim, 6 [ f(x)g(x)] exists, then the limit must be f(6)g(6).

If p is a polynomial, then lim,—., p(x) = p(b).

then there exists a number r such that | 7| < 1 and f(r) = «

. Let f be a function such that lim,_.o f(x) = 6. Then there

exists a number & such that if 0 < |x| < §, then

f(x) = 6] <1.

. If f(x) > 1 for all x and lim, ., f(x) exists, then

limxa() f(X) > 1.

. The equation x'® — 10x> + 5 = 0 has a root in the

interval (0, 2).
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“The graph of f is given.
{a) Find each limit, or explain why it does not exist.

@ lim f() ) lim f()

(iii) ‘li.n}} f(x) (iv) %iir} fx)

(v) lil}})f(x)
. (b) State the equations of the vertical asymptotes.
‘ ¢) At what numbers is f discontinuous? Explain.

(vi) ligl f(x)
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2. Sketch the graph of an example of a function f that satisfies all
of the following conditions:
lll(l)l flx) = =2, 1i1(1)1 fx) =1, f0)= -1,

li{p f(x) = =, li!p‘ flx) = —cc

3=16 Find the limit.

18. Prove that lim,—¢ x* cos(1/x?) = 0.

19-22 Prove the statement using the precise definition of a limit.

19. lim (14 — 5x) = 4 20. lim Jx = 0
x—2 x—0

- 2
21, lim (x* — 3x) = =2 22. lim —pememe =
x—2 x—>4" b e 4
23. Let

\/: if x<0
fx)=43—-x if0Lx<3
(x—3) if x>3

(a) Evaluate each limit, if it exists.

(1) li}})1 f(x) (11) lri1(1>1‘ f(x) (ii1) linll) ifikx)

(V) lim f(x)

(b) Where is f discontinuous?
(¢) Sketch the graph of f.

W) lm £ (vi) lim f(x)

24. Let

2x—x? if0<sx=<?2
2 =% if2<xs<3
x— 4 if 3<x<4
T it x=4

g(x) =

(a) For each of the numbers 2, 3, and 4, discover whether gis
continuous from the left, continuous from the right, or con-
tinuous at the number.

(b) Sketch the graph of g.

25-26 Show that each function is continuous on its domain. State
the domain.

25. h(x) = Vx + x>cosx 26. g(x) =

27-28 Use the Intermediate Value Theorem to show that there is a
root of the equation in the given interval.

27. 2x* + x> +2=0, (-2,-1)

28. 2sinx =3 —2x. (0.1)

3. lim cos(x + sin x) . 9
£ 23 x4+ 2x — 3
% .\': -9 w2 9
& hm TN
£-3 5% + 21 — 3 e gy
- 1) +1 2 _
7 ;
'l'm?’ h 8 !”Q P
o iV N
=9 (r — g)} 10. 111'1514 m
4 p—
B | . JE+6 —~x
b + 54— 6y 12. !ug —
ﬂ.lim4_\V/; 14 1 v + 20— 8
s s |6 . [m} - T3
. lim l_‘ﬁT
0 =
16 fim (1 1
ety — | PO w—y
2 X' T Z
e
8 If),

? 1< f(x) < x*for0 < x < 3, find lim,.,, ().

29. Suppose that | f(x) | < g(x) for all x, where lim, ., g(x) = 0.
Find lim, ., f(x).

30. Letf(x) = [x] + [—x].
(a) For what values of a does lim ., f(x) exist?
(b) At what numbers is f discontinuous?
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PROBLEMS PLUS —
In our discussion of the principles of problem solving we considered the problem-sol
strategy of introducing something extra (see page 54). In the following example we s
how this principle is sometimes useful when we evaluate limits. The idea is to change
variable—to introduce a new variable that is related to the original variable—in such a
as to make the problem simpler. Later, in Section 5.5, we will make more extensive us

this general idea.

| 3

! . &l +ex — 1 .

EXAMPLE | Evaluate hrr(l) —— , where c is a nonzero constant.
X X

! SOLUTION As it stands, this limit looks challenging. In Section 2.3 we evaluated several 1
its in which both numerator and denominator approached 0. There our strategy was to
form some sort of algebraic manipulation that led to a simplifying cancellation, but her
it’s not clear what kind of algebra is necessary.

So we introduce a new variable ¢ by the equation

t=3Y1 + cx
We also need to express x in terms of 7, so we solve this equation:

=1
G

=1+ cx X =

Notice that x — 0 is equivalent to  — 1. This allows us to convert the given limit into
involving the variable 7:

=0 X —1 (2 — 1)/c
ek —1)
=1 -
-1 17— 1

The change of variable allowed us to replace a relatively complicated limit by a simple
one of a type that we have seen before. Factoring the denominator as a difference of
cubes, we get

i c(t—1) i c(t—1)

11 = 11m

TP -1 - D@ +e+1)
c

zlill] [2 +t+1 ?

The following problems are meant to test and challenge your problem-solving sk
Some of them require a considerable amount of time to think through, so don’t be disc
aged if you can’t solve them right away. If you get stuck, you might find it helpful to 1
to the discussion of the principles of problem solving on page 54.

1o




PROBLEMS |

URE FOR PROBLEM 10

. Evaluate lim

. Evaluate lim

e ~1

=l a/x —1°

/ + S
. Find numbers a and b such that lim M = 1.

x—0 X

[2x = 1] = [2x + 1]

x—0 X

. The figure shows a point P on the parabola y = x* and the point O where the perpendicular

bisector of OP intersects the y-axis. As P approaches the origin along the parabola, what
happens to 0? Does it have a limiting position? If so, find it.

- Evaluate the following limits, if they exist, where [x] denotes the greatest integer function.

[x1

(a) }1_1337 (b) lim x [1/x]

. Sketch the region in the plane defined by each of the following equations.

@+ =1 0 P -[P=3 (o) [x+yP=1 @ [+ []=1

. Find all values of @ such that f is continuous on R:

x+1l ifx<ag
f(x)—{xz if x>a

. A fixed point of a function S is a number c in its domain such that f(c) = c. (The function

doesn’t move c; it stays fixed.)

(a) Sketch the graph of a continuous function with domain [0, 1] whose range also lies
in [0, 1]. Locate a fixed point of f.

(b) Try to draw the graph of a continuous function with domain [0, 1] and range in [0, 1] that
does not have a fixed point. What is the obstacle?

(¢) Use the Intermediate Value Theorem to prove that any continuous function with domain
[0, 1] and range a subset of [0, 1] must have a fixed point.

Iflim, . [f(x) + g(x)] = 2 and lim, ., [f(x) = g(x)] = 1, find lim,_., [f(x)g(x)].

. (a) The figure shows an isosceles triangle ABC with ZB = /.C. The bisector of angle B

intersects the side AC at the point P. Suppose that the base BC remains fixed but the
altitude | AM | of the triangle approaches 0, so A approaches the midpoint M of BC. What
happens to P during this process? Does it have a limiting position? If so, find it.

(b) Try to sketch the path traced out by P during this process. Then find an equation of this
curve and use this equation to sketch the curve.

. (a) If we start from 0° latitude and proceed in a westerly direction, we can let T(x) denote the

temperature at the point x at any given time. Assuming that T is a continuous function of
x, show that at any fixed time there are at least two diametrically opposite points on the
equator that have exactly the same temperature.

(b) Does the result in part (a) hold for points lying on any circle on the earth’s surface?

(c) Does the result in part (a) hold for barometric pressure and for altitude above sea level?

PROBLEMS PLUS—




