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A graphical representation of a 2
function—here the number of 5
hours of daylight as a function * Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
of the time of year at various
latitudes—is often the most
natural and convenient way to
represent the function.

The fundamental objects that we deal with in calculus are functions. This chapter
prepares the way for calculus by discussing the basic ideas concerning functions, their
graphs, and ways of transforming and combining them. We stress that a function can be
represented in different ways: by an equation, in a table, by a graph, or in words. We
look at the main types of functions that occur in calculus and describe the process of
using these functions as mathematical models of real-world phenomena. We also discuss
the use of graphing calculators and graphing software for computers.
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FOUR WAYS TO REPRESENT A FUNCTION

Population
Year (millions)
1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080

FIGURE |

Vertical ground acceleration during
the Northridge earthquake

Functions arise whenever one quantity depends on another. Consider the following four
situations.

A. The area A of a circle depends on the radius 7 of the circle. The rule that connects r
and A is given by the equation A = arr®. With each positive number r there is associ-
ated one value of A, and we say that A is a function of r. .

B. The human population of the world P depends on the time 7. The table gives estimates
of the world population P(¢) at time ¢, for certain years. For instance,

P(1950) = 2,560,000,000

But for each value of the time ¢ there is a corresponding value of P, and we say that P
is a function of t.

C. The cost C of mailing a first-class letter depends on the weight w of the letter.
Although there is no simple formula that connects w and C, the post office has a rule
for determining C when w is known.

D. The vertical acceleration a of the ground as measured by a seismograph during an
earthquake is a function of the elapsed time . Figure 1 shows a graph generated by
seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of ¢, the graph provides a corresponding value of a.
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Each of these examples describes a rule whereby, given a number (7, ¢, w, or t), another
number (A, P, C, or a) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function f is a rule that assigns to each element x in a set D exactly one ele-
ment, called f(x), in a set E.

We usually consider functions for which the sets D and E are sets of real numbers. The
set D is called the domain of the function. The number f(x) is the value of f at x and is
read “f of x.” The range of f is the set of all possible values of f (x) as x varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function
f is called an independent variable. A symbol that represents a number in the range of f
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.
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FIGURE 8

= The expression

fla+h) —fla)

X=a+ h.

h

in Example 3 is called a difference quotient
and occurs frequently in calculus. As we will
see in Chapter 2, it represents the average rate
of change of f(x) between x = a and
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EXAMPLE 2 Sketch the graph and find the domain and range of each function.
(a) flx) =2x—1 (b) g = x*

SOLUTION

(a) The equation of the graphis y = 2x — 1, and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept —1. (Recall the slope-intercept form of the
equation of a line: y = mx + b. See Appendix B.) This enables us to sketch a portion of
the graph of f in Figure 7. The expression 2x — 1 is defined for all real numbers, so the
domain of f is the set of all real numbers, which we denote by R. The graph shows that
the range is also R.

(b) Since g(2) =2*=4andg(—1) = (—=1)> = 1, we could plot the points (2,4) and
(—1, 1), together with a few other points on the graph, and join them to produce the
graph (Figure 8). The equation of the graphis y = x2, which represents a parabola (see
Appendix C). The domain of g is R. The range of g consists of all values of g(x), that is,
all numbers of the form x2. But x*> = 0 for all numbers x and any positive number y is a
square. So the range of g is {y| y = 0} = [0, ). This can also be seen from Figure 8. O

+h) -
EXAMPLE 3 If f(x) = 2x* — 5x + 1 and h # 0, evaluate flat b —fla) })l f(a).

SOLUTION We first evaluate f(a + h) by replacing xby a + h in the expression for f(x):
fla+h)y=2@a+h?—5a+h+1
= 2(a* + 2ah + h*) — 5(a + h) + 1
= 2a%> + 4ah + 2h* — 5a — 5h + 1

Then we substitute into the given expression and simplify:

f(a+h)—f(a):(2a2+4ah+2h2—50—5h+1)—(2a2—5a+1)
h h

2a* + dah + 20 — 5a — 5h + 1 —2a* + 5a — 1
h

4ah + 2h* — 5h
=————mla ¥ 20 O

REPRESENTATIONS OF FUNCTIONS

There are four possible ways to represent a function:

: verbally (by a description in words)
+ numerically (by a table of values)
visually (by a graph)
algebraically (by an explicit formula)

If a single functio
representation to another to gain additional insight into the function. (I
instance, we started with algebraic formulas and then obtained the graphs.) But certain

n can be represented in all four ways, it’s often useful to go from one
n Example 2, for

st o G



14 |||l CHAPTER I FUNCTIONS AND MODELS
functions are described more naturally by one method than by another. With this in ;
let’s reexamine the four situations that we considered at the beginning of this sectios
A. The most useful representation of the area of a circle as a function of its radius is
probably the algebraic formula A(r) = mrr?, though it is possible to compile a tab
values or to sketch a graph (half a parabola). Because a circle has to have a positi
radius, the domain is {r|r > 0} = (0, «),’and the range is also (0, ).
: B. We are given a description of the function in words: P(t) is the human population
pOPlllll.aU?n the world at time . The table of values of world population provides a convenien
Year (uilims) representation of this function. If we plot these values, we get the graph (called a
1900 1650 scatter plot) in Figure 9. It too is a useful representation; the graph allows us to
1910 1750 absorb all the data at once. What about a formula? Of course, it’s impossible to d
1920 1860 an explicit formula that gives the exact human population P(t) at any time 7. But i
1930 2070 possible to find an expression for a function that approximates P(?). In fact, using
1940 2300 methods explained in Section 1.2, we obtain the approximation
1950 2560
1960 3040 P() = () = (0.008079266) - (1.013731)’
1970 3710 , o . o
1980 4450 and Figure 10 shows that it is a reasonably good “fit.” The function f is called a
1990 5280 mathematical model for population growth. In other words, it is a function with a
2000 6080 explicit formula that approximates the behavior of our given function. We will se
however, that the ideas of calculus can be applied to a table of values; an explicit
formula is not necessary.
P 1 P
6x10° 1 ‘ 6% 10° 1 :
1900 1920 1940 1960 1980 2000 ° 1900 1920 1940 1960 1980 2000 !
FIGURE 9 FIGURE 10
= A function defined by a table of values is The function P is typical of the functions that arise whenever we attempt to ap;
called a tabular function. calculus to the real world. We start with a verbal description of a function. Then
may be able to construct a table of values of the function, perhaps from instrume:
w (ounces) C(w) (dollars) readings in a scientific experiment. Even though we don’t have complete knowlex
0<w=1 039 of the values of the function, we will see throughout the book that it is still possil
1< w<? Ot 63 perform the operations of calculus on such a function.
2<w=<3 0.87 C. Again the function is described in words: C(w) is the cost of mailing a first-class
3<ws<4 1.11 with weight w. The rule that the US Postal Service used as of 2007 is as follows:
4<ws<35 1.35 cost is 39 cents for up to one ounce, plus 24 cents for each successive ounce up t
ounces. The table of values shown in the margin is the most convenient represent
for this function, though it is possible to sketch a graph (see Example 10).
12 <w<13 397 D. The graph shown in Figure 1 is the most natural representation of the vertical acc
; ation function a(f). It’s true that a table of values could be compiled, and it is eve
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FIGURE 11

FIGURE 12

% In sening_ up applied functions as in
E){ample 5, it may be useful to review the
principles of problem solving as discussed

On page 76, particularly Step 7: Understand
the Problem,
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possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is
true for the patterns seen in electrocardiograms of heart patients and polygraphs for
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

EXAMPLE 4 When you turn on a hot-water faucet, the temperature 7 of the water
depends on how long the water has been running. Draw a rough graph of 7 as a function
of the time ¢ that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room temperature
because the water has been sitting in the pipes. When the water from the hot-water tank
starts flowing from the faucet, T increases quickly. In the next phase, T is constant at the
temperature of the heated water in the tank. When the tank is drained, T decreases to

the temperature of the water supply. This enables us to make the rough sketch of T as a
function of ¢ in Figure 11. a

In the following example we start with a verbal description of a function in a physical
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill in
solving calculus problems that ask for the maximum or minimum values of quantities.

I EXAMPLE 5 A rectangular storage container with an open top has a volume of 10 m’.
The length of its base is twice its width. Material for the base costs $10 per square
meter; material for the sides costs $6 per square meter. Express the cost of materials as a
function of the width of the base.

SOLUTION We draw a diagram as in Figure 12 and introduce notation by letting w and 2w
be the width and length of the base, respectively, and 4 be the height.

The area of the base is (2w)w = 2w?, so the cost, in dollars, of the material for the
base is 10(2w?). Two of the sides have area wh and the other two have area 2wh, so the
cost of the material for the sides is 6[2(wh) + 2(2wh)]. The total cost is therefore

C = 10Q2w*) + 6[2(wh) + 2(2wh)] = 20w* + 36wh

To express C as a function of w alone, we need to eliminate 4 and we do so by using the
fact that the volume is 10 m®. Thus

w(w)h = 10

10 5
hich gi h= = —
which gives St

Substituting this into the expression for C, we have

5 180
C = 20w* + 36w<—,> = 20w + —
w- w

Therefore, the equation

180
C(w) = 20w® + — w>0
w

expresses C as a function of w. O
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If a function is given by a formula and the
domain is not stated explicitly, the convention is
that the domain is the set of all numbers for
which the formula makes sense and defines a

real number.

FIGURE 13

EXAMPLE 6 Find the domain of each function.

1
(a) f) = Vx +2 ®) 900 =2

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number),

the domain of f consists of all values of x such that x + 2 = 0. This is equivalent to
x = —2, so the domain is the interval [ —2, %).

(b) Since

1 1
g(x)=x2—x—x(x—1)

and division by 0 is not allowed, we see that g(x) is not defined when x = Qorx=1.
Thus the domain of g is
{x|x#0,x# 1}

which could also be written in interval notation as
(=0, 0) U (0,1) U (1, %) |

The graph of a function is a curve in the xy-plane. But the question arises: Which curves
in the xy-plane are graphs of functions? This is answered by the following test.

l THE VERTICAL LINE TEST A curve in the xy-plane is the graph of a function of x if

| and only if no vertical line intersects the curve more than once.
|

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each ver-
tical line x = a intersects a curve only once, at (a, b), then exactly one functional value
is defined by f(a) = b. Butif a line x = a intersects the curve twice, at (a,b) and (a, ¢),
then the curve can’t represent a function because a function can’t assign two different val-

ues to a.

For example, the parabola x = y? — 2 shown in Figure 14(a) on the next page is not th
graph of a function of x because, as you can see, there are vertical lines that intersect the
parabola twice. The parabola, however, does contain the graphs of mwo functions of x
Notice that the equation x = y? — 2 implies yr=x+2,50y=FJx+ 2. Thus th
upper and lower halves of the parabola are the graphs of the functions f(x) = v/x + -
[from Example 6(2)] and g(x) = —/x + 2. [See Figures 14(b) and (c).] We observe th:
if we reverse the roles of x and y, then the equation x = h(y) = y? — 2 does define x as
function of y (with y as the independent variable and x as the dependent variable) and th
parabola now appears as the graph of the function k.




FIGURE 14

FIGURE 15

# For a more extensive review of absolute
values, see Appendix A.
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2,080 x 8 -
(@) x=y>—2 (b) _y:\/‘r,\':i (C)y:_\/;Ii

PIECEWISE DEFINED FUNCTIONS

The functions in the following four examples are defined by different formulas in differ-
ent parts of their domains.

K2 EXAMPLE 7 A function f is defined by

= {17— x ifx=<1

X if x>1

Evaluate £(0), f(1), and f(2) and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input x. If it happens that x < 1, then the value
of f(x)is 1 — x. On the other hand, if x > 1, then the value of Fl) is %

Since 0 < 1, we have f(0) =1 —0= L
Sincel < 1,wehave f(1)=1—-1=0.
Since 2 > 1, we have f(2) = 2> = 4.

How do we draw the graph of f? We observe that if x < 1, then f(x) = 1 — x, so the
part of the graph of f that lies to the left of the vertical line x = 1 must coincide with
the line y = 1 — x, which has slope —1 and y-intercept 1. If x > 1, then f(x) = x% s0
the part of the graph of f that lies to the right of the line x = 1 must coincide with the
graph of y = x?, which is a parabola. This enables us to sketch the graph in Figure 15.
The solid dot indicates that the point (1, 0) is included on the graph; the open dot indi-
cates that the point (1, 1) is excluded from the graph. a

The next example of a piecewise defined function is the absolute value function. Recall
that the absolute value of a number a, denoted by |a|, is the distance from a to 0 on the
real number line. Distances are always positive or 0, so we have

|a| =0  for every number a
For example,
3l=3  |-31=3 [0]=0 IWE-1=vZ-1 [3-m=7=3
In general, we have
| la| =a if a=0 ‘(
‘ la|=—-a ifa<0 "‘

(Remember that if a is negative, then —a is positive.)
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FIGURE 16

FIGURE 17

= Point-slope form of the equation of a line:

y =y =m(x — x1)

See Appendix B.

C
O—

1 O

o—e
Oo—e
e
of 1 2 3 4 5

FIGURE 18

w

EXAMPLE 8 Sketch the graph of the absolute value function f(x) = |x]|.

SOLUTION From the preceding discussion we know that

w = Hx=0
7 -x ifx<o0

Using the same method as in Example 7, we see that the graph of f coincides with the
line y = x to the right of the y-axis and coincides with the line y = —x to the left of the
y-axis (see Figure 16). O

EXAMPLE 9 Find a formula for the function f graphed in Figure 17.

y

SOLUTION The line through (0, 0) and (1, 1) has slope m = 1 and y-intercept b = 0, so its
equation is y = x. Thus, for the part of the graph of f that joins (0, 0) to (1, 1), we have

f(x) =x fosx=<1
The line through (1, 1) and (2, 0) has slope m = —1, so its point-slope form is
y—0=(—1)x—2) or y=2-—x
So we have fx) =2 —x ifl<xs<2

We also see that the graph of f coincides with the x-axis for x > 2. Putting this informa-
tion together, we have the following three-piece formula for f:

X if 0sx<1
fx)=492—-x if l<xs2
0 if x>2 ‘ 0

EXAMPLE 10 In Example C at the beginning of this section we considered the cost C(w)
of mailing a first-class letter with weight w. In effect, this is a piecewise defined function
because, from the table of values, we have

039 f0<ws<1
063 if 1l<ws<?2
Clwy = { 087 if2<w<3
111 if3<ws<4

The graph is shown in Figure 18. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2. O




FIGURE 19
An even function
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SYMMETRY

FIGURE 20
An odd function

If a function f satisfies f(—x) = f(x) for every number x in its domain, then f is called an
even function. For instance, the function f (x) = x?*is even because

The geometric significance of an even function is that its graph is symmetric with respect
to the y-axis (see Figure 19). This means that if we have plotted the graph of f for x = 0,
we obtain the entire graph simply by reflecting this portion about the y-axis.

If f satisfies f(—x) = —f(x) for every number x in its domain, then f is called an odd
function. For example, the function flx) = x> is odd because

f(=3) = (=xp = = = ~f()

The graph of an odd function is symmetric about the origin (see Figure 20). If we already

have the graph of f for x = 0, we can obtain the entire graph by rotating this portion
through 180° about the origin.

i EXAMPLE 11 Determine whether each of the following functions is even, odd, or
neither even nor odd.

(a) flx) =x"+x ) h(x) =2x — x°

(b) g(x) =1 — x*

SOLUTION

@ f(=0) = (=0 + (=) = (~1)%* + (=)
=—x—-x=-(x"+1%
= =fix)

Therefore f is an odd function.

(b) g(—x)=1-(—»*=1-x"=4(x)

So g is even.

©) h(—=x) = 2(—x) — (—x)* = —2x — x?

Since h(—x) # h(x) and h(—x) # —h(x), we conclude that A is neither even nor odd. [

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the
graph of h is symmetric neither about the y-axis nor about the origin.

(a) (b) ©
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INCREASING AND DECREASING FUNCTIONS

The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C
to D. The function f is said to be increasing on the interval [a, b), decreasing on [b, c], and
increasing again on [c, d ]. Notice that if x and x, are any two numbers between a and b
with x; < x2, then f(x1) < f(x2). We use this as the defining property of an increasing

function.

FIGURE 22

'\ fx1) < f(x2) whenever x; < x21in/ |

1 |
| Ttis called decreasing on / if

|
| . |
| f(x1) > f(x2) whenever x; < xzin [ |

—

In the definition of an increasing function it is important to realize that the inequality
f(x1) < f(xz) must be satisfied for every pair of numbers X; and x, in I with x; < x2.

You can see from Figure 23 that the function f(x) = x? is decreasing on the interval
(—, 0] and increasing on the interval [0, ).

I. The graph of a function f is given.
(a) State the value of f(=1).

(b) Estimate the value of f 2).

(c) For what values of x is flx) =27

(d) Estimate the values of x such that f(x) = 0.
(e) State the domain and range of f.

(f) On what interval is f increasing?
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(3] The graphs of f and g are given.
- (a) State the values of f(—4) and g(3).
(b) For what values of x is f(x) = g(x)?
(c) Estimate the solution of the equation f(x) = —1.
(d) On what interval is f decreasing?
(e) State the domain and range of f.
(f) State the domain and range of g.

T
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0 2

—4
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3. Figure 1 was recorded by an instrument operated by the Cali-
fornia Department of Mines and Geology at the University
Hospital of the University of Southern California in Los Ange-
les. Use it to estimate the range of the vertical ground accelera-
tion function at USC during the Northridge earthquake.

4. In this section we discussed examples of ordinary, everyday
functions: Population is a function of time, postage cost is a
function of weight, water temperature is a function of time.
Give three other examples of functions from everyday life that
are described verbally. What can you say about the domain and
range of each of your functions? If possible, sketch a rough
graph of each function.

5-8 Determine whether the curve is the graph of a function of x.
If it is, state the domain and range of the function.

. DN “« T
. T |
am) :
- |
0|/ 1 x|
l
[g
1
| 0] 1 X
L

% The graph shown gives the weight of a certain person as a
function of age. Describe in words how this person’s weight
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varies over time. What do you think happened when this person
was 30 years old?

200 T

Weight 1507
d

(pounds) 100+

50T

0| 10 20 30 40 50 60 70 Age
(years)

10. The graph shown gives a salesman’s distance from his home as
a function of time on a certain day. Describe in words what the
graph indicates about his travels on this day.

Distance
from home
(miles) \
8 AM 10 NOON 2 4 gpm  Lime
(hours)

[11.] You put some ice cubes in a glass, fill the glass with cold
water, and then let the glass sit on a table. Describe how the
temperature of the water changes as time passes. Then sketch a
rough graph of the temperature of the water as a function of the
elapsed time.

12. Sketch a rough graph of the number of hours of daylight as a
function of the time of year.

(13, Sketch a rough graph of the outdoor temperature as a function
of time during a typical spring day.

14. Sketch a rough graph of the market value of a new car as a
function of time for a period of 20 years. Assume the car is
well maintained.

15. Sketch the graph of the amount of a particular brand of coffee
sold by a store as a function of the price of the coffee.

16. You place a frozen pie in an oven and bake it for an hour. Then
you take it out and let it cool before eating it. Describe how the
temperature of the pie changes as time passes. Then sketch a
rough graph of the temperature of the pie as a function of time.

17. A homeowner mows the lawn every Wednesday afternoon.
Sketch a rough graph of the height of the grass as a function of
time over the course of a four-week period.

18. An airplane takes off from an airport and lands an hour later at
another airport, 400 miles away. If ¢ represents the time in min-
utes since the plane has left the terminal building, let x(f) be
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the horizontal distance traveled and y(¢) be the altitude of the
plane.

(a) Sketch a possible graph of x().

(b) Sketch a possible graph of y(2).

(c) Sketch a possible graph of the ground speed.

(d) Sketch a possible graph of the vertical velocity.

19. The number N (in millions) of cellular phone subscribers
worldwide is shown in the table. (Midyear estimates are given.)

1
i ¢ | 1990 | 1992 | 1994 | 199 | 1998 | 2000
\ N \ 11 26 60 160 | 340 | 650

(a) Use the data to sketch a rough graph of N as a function of 7.
(b) Use your graph to estimate the number of cell-phone sub-
scribers at midyear in 1995 and 1999.

20. Temperature readings T (in °F) were recorded every two hours
from midnight to 2:00 PM in Dallas on June 2, 2001. The time
t was measured in hours from midnight.

t o 2 4 6]8 10 | 12 | 14
|73 |71 | 0 69\72181 88 | 91

|
|

(a) Use the readings to sketch a rough graph of T as a function
of 7.
(b) Use your graph to estimate the temperature at 11:00 AM.

21, If f(x) = 3x* — x + 2, find £(2), f(=2), fa), f(—a),
fla + 1), 2f(a), f(2a), f(a®), (@))% and f(a + h).

22. A spherical balloon with radius r inches has volume
V(r) = % 77>, Find a function that represents the amount of air
required to inflate the balloon from a radius of r inches to a
radius of r + 1 inches.

23-26 Evaluate the difference quotient for the given function.
Simplify your answer.

B f) =4+ -, L8FEW-FO

h
0, flgamg Lt =fla)
’ h
2. foy =L, [W=f@
x’ Xo—1q
_x+3 [ - fQ1)
26'f(X)—)wFl’ x—1

*27-31 Find the domain of the function.

X 5x + 4

27. f(x) = 28. f(0) =375

3x — 1

29. f(1) = i + 1

30. gu) = Ju + /4 —u

32. Find the domain and range and sketch the graph of the function

h(x) = /4 — x2.

33-44 Find the domain and sketch the graph of the function.

33, f(x) =5 34. F(x) =3(x + 3)
—t2
35. f(f) =1t*— 6t 36. H(t) = T
37. gx) = /x — 5 38. F(x) = |2x + 1|
5 oy = 215l 0. g0 = 2|
x+2 ifx<O0
S f(x)z{l—x if x>0

—s% df x =2

42'f(x)={2x—5 if x> 2

x4+ 2 if s =1
@f(x)_{x2 if x> —1

x+9 ifx<-3
44, f(x) =4 —2x if |x| <3

-6 if x>3

45-50 Find an expression for the function whose graph is the
given curve.

45. The line segment joining the points (1, —3) and (5, 7)
46. The line segment joining the points (=5, 10) and (7, — 10)
[47.] The bottom half of the parabola x + (y — 1)>=0

48. The top half of the circle x> + (y — 2)* =4

51-55 Find a formula for the described function and state its
domain.

51. A rectangle has perimeter 20 m. Express the area of the rect-
angle as a function of the length of one of its sides.




52. A rectangle has area 16 m* Express the perimeter of the rect-
angle as a function of the length of one of its sides.

53. Express the area of an equilateral triangle as a function of the
length of a side.

54. Express the surface area of a cube as a function of its volume.

[§5] An open rectangular box with volume 2 m® has a square base.
~ Express the surface area of the box as a function of the length
of a side of the base.
>

56. A Norman window has the shape of a rectangle surmounted by
a semicircle. If the perimeter of the window is 30 ft, express
the area A of the window as a function of the width x of the
window.

© Catherine Karnow

f——X

57. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 12 in. by 20 in. by cutting
out equal squares of side x at each corner and then folding up
the sides as in the figure. Express the volume V of the box as a
function of x.

i 20 |
I X X
12
| X %
5
x
i X

58. A taxi company charges two dollars for the first mile (or part

of a mile) and 20 cents for each succeeding tenth of a mile (or
part). Express the cost C (in dollars) of a ride as a function of
the distance x traveled (in miles) for 0 < x < 2, and sketch the
graph of this function.

139, In a certain country, income tax is assessed as follows. There is
1o tax on income up to $10,000. Any income over $10,000 is
taxed at a rate of 10%, up to an income of $20,000. Any income
over $20,000 is taxed at 15%.

(a) Sketch the graph of the tax rate R as a function of the
mcome /.
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(b) How much tax is assessed on an income of $14,000?
On $26,000?

(c) Sketch the graph of the total assessed tax T as a function of
the income 1. |

60. The functions in Example 10 and Exercises 58 and 59(a) are
called step functions because their graphs look like stairs. Give
two other examples of step functions that arise in everyday life.

61-62 Graphs of f and g are shown. Decide whether each function
is even, odd, or neither. Explain your reasoning.

fUJ /\\/

—> ——
X b

A~

6l.

|

|

i

|

63. (a) If the point (5, 3) is on the graph of an even function, what i
other point must also be on the graph?

(b) If the point (5, 3) is on the graph of an odd function, what

other point must also be on the graph?

|

64. A function f has domain [—S5, 5] and a portion of its graph is i
shown. .
(a) Complete the graph of fif it is known that f is even. i
(b) Complete the graph of f if it is known that f is odd.

—

65-70 Determine whether f is even, odd, or neither. If you have a
graphing calculator, use it to check your answer visually.

2

5. f() = 66. f() = =77
67. f()c)=x_|_1 68. f(x) = x|x|

69. f(x) =1+3x>—x* 70. f(x) =1+3x"—x°

-
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MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS

Real-world
problem

!

Formulate

A mathematical model is a mathematical description (often by means of a function o
equation) of a real-world phenomenon such as the size of a population, the demand fi
product, the speed of a falling object, the concentration of a product in a chemical r¢
tion, the life expectancy of a person at birth, or the cost of emission reductions. The j
pose of the model is to understand the phenomenon and perhaps to make predictions at
future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world probl
our first task is to formulate a mathematical model by identifying and naming the ir
pendent and dependent variables and making assumptions that simplify the phenome
enough to make it mathematically tractable. We use our knowledge of the physical si
tion and our mathematical skills to obtain equations that relate the variables. In situati
where there is no physical law to guide us, we may need to collect data (either fro;
library or the Internet or by conducting our own experiments) and examine the data in
form of a table in order to discern patterns. From this numerical representation of a fu
tion we may wish to obtain a graphical representation by plotting the data. The gr
might even suggest a suitable algebraic formula in some cases.

Mathematical Solve Mathematical Interpret Real-worlc
model conclusions predictions
Test

FIGURE | The modeling process

# The coordinate geometry of lines is reviewed

in Appendix B.

The second stage is to apply the mathematics that we know (such as the calculus
will be developed throughout this book) to the mathematical model that we have for
lated in order to derive mathematical conclusions. Then, in the third stage, we take th
mathematical conclusions and interpret them as information about the original real-we
phenomenon by way of offering explanations or making predictions. The final step i
test our predictions by checking against new real data. If the predictions don’t comy
well with reality, we need to refine our model or to formulate a new model and start
cycle again.

A mathematical model is never a completely accurate representation of a physical s
ation—it is an idealization. A good model simplifies reality enough to permit mathem
cal calculations but is accurate enough to provide valuable conclusions. It is importan
realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationst
observed in the real world. In what follows, we discuss the behavior and graphs of th
functions and give examples of situations appropriately modeled by such functions.

LINEAR MODELS

When we say that y is a linear function of x, we mean that the graph of the function -
line, so we can use the slope-intercept form of the equation of a line to write a formula
the function as

y=f(x)=mx+b

where m is the slope of the line and b is the y-intercept.




N

FIGURE 2

\ T=-10h+20

h

FIGURE 3
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A characteristic feature of linear functions is that they grow at a constant rate. For
instance, Figure 2 shows a graph of the linear function f(x) = 3x — 2 and a table of sam-
ple values. Notice that whenever x increases by 0.1, the value of f (x) increases by 0.3. So
f(x) increases three times as fast as x. Thus the slope of the graph y = 3x — 2, namely 3, can
be interpreted as the rate of change of y with respect to x.

y

x flx)=3x—2

p =i 1.0 1.0

1.1 13

1.2 1.6

0 * 1.3 1.9

5 1.4 23

1.5 2.5

K7 EXAMPLE |

(a) As dry air moves upward, it expands and cools. If the ground temperature is 20°C
and the temperature at a height of 1 km is 10°C, express the temperature 7 (in °C) as a
function of the height & (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?

(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that 7' is a linear function of #, we can write

T=mh+b
We are given that 7= 20 when & = 0, so
20=m:0+b=0b

In other words, the y-intercept is b = 20.
We are also given that 7= 10 when h = 1, so

10=m-+1+20
The slope of the line is therefore m = 10 — 20 = —10 and the required linear function is
T=-10h + 20

(b) The graph is sketched in Figure 3. The slope is m = —10°C/km, and this represents
the rate of change of temperature with respect to height.

(c) Ata height of A = 2.5 km, the temperature is
T = —10(2.5) + 20 = —=5°C a

If there is no physical law or principle to help us formulate a model, we construct an
empirical model, which is based entirely on collected data. We seek a curve that “fits” the
data in the sense that it captures the basic trend of the data points.
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I7 EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, measurec
in parts per million at Mauna Loa Observatory from 1980 to 2002. Use the data in
Table 1 to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where ¢ repre-
sents time (in years) and C represents the CO, level (in parts per million, ppm).

(&
1 370
| TABLE |
; CO; level CO; level 360 4
| Year (in ppm) Year (in ppm)
% 1980 338.7 1992 356.4
1982 341.1 1994 358.9 3307
| 1984 344.4 1996 362.6
| 1986 347.2 1998 366.6 340 4
1988 | 351.5 2000 369.4
b i | 2002 SIS 19I80 19;35 19§0 19'95 2600 t
FIGURE 4 Scatter plot for the average CO, level
Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approximate
these data points, so which one should we use? From the graph, it appears that one possi-
bility is the line that passes through the first and last data points. The slope of this line is
372.9 — 338.7 342 15545
2002 — 1980 22 '
and its equation is
C — 338.7 = 1.5545(t — 1980)
or
[1] C = 1.5545¢ — 2739.21
Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed
in Figure 5.
C
370 1
360 W
350 1
340 1
FIGURE 5 . . . ‘ ‘
Linear model through 1980 1985 1990 1995 2000 !
first and last data points

Although our model fits the data reasonably well, it gives values higher than most of
the actual CO, levels. A better linear model is obtained by a procedure from statistics




" @ A computer 0f graphing calculator finds the

regression line by th

e method of least squares,

which is to minimize the sum of the squares of the
vertical distances between the data points and the

line. The deta

ils are explained in Section 14.7.

FIGURE 6
The regression line
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called linear regression. If we use a graphing calculator, we enter the data from Table 1

into the data editor and choose the linear regression command. (With Maple we use the

fit[leastsquare] command in the
mand.) The machine gives the s

stats package;
lope and y-intercept of the regression line as

with Mathematica we use the Fit com-

m = 1.55192 = —2734.55
So our least squares model for the CO, level is
C = 1.55192t — 2734.55

In Figure 6 we graph the re
Figure 5, we see that it gives a

G
370

360

350

gression line as well as the data points. Comparing with
better fit than our previous linear model.

/

340 /

1980 1985 1990 1995 2000 t

7 EXAMPLE 3 Use the linear model given by

Equation 2 to estimate the average CO,

level for 1987 and to predict the level for the year 2010. According to this model, when
will the CO, level exceed 400 parts per million?

SOLUTION Using Equation 2 with
was

¢t = 1987, we estimate that the average CO, level in 1987

€(1987) = (1.55192)(1987) — 2734.55 =~ 349.12

This is an example of interpolation because we have estimated a value between observed
values. (In fact, the Mauna Loa Observatory reported that the average CO, level in 1987
was 348.93 ppm, so our estimate is quite accurate.)

With ¢t = 2010, we get

C(2010) = (1.55192)(2010) — 2734.55 =~ 384.81

So we predict that the average CO, level in the year 2010 will be 384.8 ppm. This is

an example of extrapolation because we have predicted a value outside the region of

observations. Consequently, we are far less certain about the accuracy of our prediction.
Using Equation 2, we see that the CO, level exceeds 400 ppm when

Solving this inequality, we get

1.55192¢ — 2734.55 > 400

3134.55

> —_—
1.55192

~ 2019.79
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We therefore predict that the CO, level will exceed 400 ppm by the year 2019. This
prediction is somewhat risky because it involves a time quite remote from our
observations.

POLYNOMIALS

A function P is called a polynomial if
P()C) = a,x" + an'ﬂX'FJ SR o a:x2 + ax + ag

where nis a nonnegative integer and the numbers ao, ai, ay, . . ., a, are constants called tt
coefficients of the polynomial. The domain of any polynomial is R = (—oo, o), If t}
leading coefficient a, 0, then the degree of the polynomial is n. For example, tt
function

Plx) =2x%—x*+ 253+ 2

is a polynomial of degree 6.

A polynomial of degree 1 is of the form P(x) = mx + b and so it is a linear functior
A polynomial of degree 2 is of the form P(x) = ax? + bx + ¢ and is called a quadrati
function. Its graph is always a parabola obtained by shifting the parabola y = ax? as w
will see in the next section. The parabola opens upward if @ > 0 and downward if @ < (
(See Figure 7.)

FIGURE 7
The graphs of quadratic
functions are parabolas. @y=x*+x+1 (b)y=-2x2+3x+1

A polynomial of degree 3 is of the form
Px) =ax*+ bx*+cx +d (a #0)

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) and
graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why the
graphs have these shapes.

| FIGURE 8 @y=x*—x+1 b)y=x*—3x2+yx (©) y=3x"—25x*+ 60x




TABLE 2
Time Height
(seconds) (meters)
0 450
1 445
2 431
3 408
| 4 375
i 5 332
6 279
? 7 216
8 143
‘ 9 61
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Polynomials are commonly used to model various quantities that occur in the natural
and social sciences. For instance, in Section 3.7 we will explain why economists often use
a polynomial P(x) to represent the cost of producing x units of a commodity. In the follow-
ing example we use a quadratic function to model the fall of a ball.

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower, 450 m
above the ground, and its height 4 above the ground is recorded at 1-second intervals in
Table 2. Find a model to fit the data and use the model to predict the time at which the
ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear model is
inappropriate. But it looks as if the data points might lie on a parabola, so we try a quad-
ratic model instead. Using a graphing calculator or computer algebra system (which uses
the least squares method), we obtain the following quadratic model:

h = 449.36 + 0.96¢ — 4.90¢*
h h
(meters)
wot e 400

200 + ’ 200 T

of 2 4 6 t 0
(seconds)

FIGURE 9 FIGURE 10

Scatter plot for a falling ball Quadratic model for a falling ball

In Figure 10 we plot the graph of Equation 3 together with the data points and see
that the quadratic model gives a very good fit.
The ball hits the ground when 2 = 0, so we solve the quadratic equation

—4.90t* + 0.96¢ + 449.36 = 0

The quadratic formula gives

. —0.96 + /(0.96)> — 4(—4.90) (449.36)
2(—4.90)

The positive root is ¢ = 9.67, so we predict that the ball will hit the ground after about
9.7 seconds. £

POWER FUNCTIONS

A function of the form f(x) = x° where a is a constant, is called a power function. We
consider several cases.
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(i) @ = n, where n is a positive integer

The graphs of f(x) = x" forn = 1,2, 3,4, and 5 are shown in Figure 11. (These are pc
nomials with only one term.) We already know the shape of the graphs of y = x (alin
through the origin with slope 1) and y = x? [a parabola, see Example 2(b) in Section 1

4

Families of power functions

Graphs of root functions

AR, | Emiaid = e

=x =x y=x y=x
' TR 7 y
1 11 1

> — +—>

3 - 0 i * 0 } = 0 1 2

Graphs of f(x)=x"forn=1,2,3,4,5

The general shape of the graph of f(x) = x" depends on whether 7 is even or odd.
is even, then f(x) = x" is an even function and its graph is similar to the parabolay =
If n is odd, then f(x) = x" is an odd function and its graph is similar to that of y = %
Notice from Figure 12, however, that as n increases, the graph of y = x" becomes flat
near 0 and steeper when |x| = 1. (If x is small, then x* is smaller, x* is even smaller,
is smaller still, and so on.)

(i) @ = 1/n, where n is a positive integer

The function f(x) = x'/* = {/x is a root function. For n = 2 it is the square root fun
tion f(x) = +/x, whose domain is [0, «) and whose graph is the upper half of the
parabola x = y?. [See Figure 13(a).] For other even values of n, the graph of y = x
similar to that of y = Vx. For n = 3 we have the cube root function f(x) = 3x whos
domain is R (recall that every real number has a cube root) and whose graph is show:
Figure 13(b). The graph of y = &/x for n odd (n > 3) is similar to that of y = /x.

)’1 y
(1,1 1,1
0 T x / 0 *
(@) flx)=/x () flx)=x




FIGURE 14
The reciprocal function

FIGURE I5
Volume as a function of pressure
at constant temperature

.Y (
\ I : \
&/ | |
| |
I 20 |
| |
I I
T +
I/ 0 \2 X
i \
|
I \‘l
| |
| I
FIGURE 16
2x*— x?
f(x): ;,])C—+l
x“—4

i
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(iii) a = —

The graph of the reciprocal function f (x) = x~' = 1/x is shown in Figure 14. Its graph
has the equation y = 1/x,orxy = 1,and is a hyperbola with the coordinate axes as its
asymptotes. This function arises in physics and chemistry in connection with Boyle’s
Law, which says that, when the temperature is constant, the volume V of a gas is
inversely proportional to the pressure P:

c
v=—
P

where C is a constant. Thus the graph of Vas a function of P (see Figure 15) has the
same general shape as the right half of Figure 14.

vV

Another instance in which a power function is used to model a physical phenomenon
is discussed in Exercise 26.

RATIONAL FUNCTIONS

A rational function f is a ratio of two polynomials:

P(x)
0(x)

fx) =

where P and Q are polynomials. The domain consists of all values of x such that Q(x) # 0.
A simple example of a rational function is the function f (x) = 1/x, whose domain is
{x| x # OF; this is the reciprocal function graphed in Figure 14. The function

2t — x4+ 1
f(-x)_ x2_4

is a rational function with domain {x|x # =2} Its graph is shown in Figure 16.

ALGEBRAIC FUNCTIONS

A function f is called an algebraic function if it can be constructed using algebraic oper-
ations (such as addition, subtraction, multiplication, division, and taking roots) starting
with polynomials. Any rational function is automatically an algebraic function. Here are
two more examples:

F)=x + 1 g(x) = xt = 1607 ) r
+Vx

X




|
|
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FIGURE 17

« The Reference Pages are located at the front
and back of the book.

When we sketch algebraic functions in Chapter 4, we will see that their graphs can assume
a variety of shapes. Figure 17 illustrates some of the possibilities.

y y y
\ [
2 T \ /’
N \ /
\ /
: . \
73\ i | i
\ 1 _ [ /
of s x 0| ; X
@) f(x)=xy/x+3 ) g(x)=4x*—25 (©) h(x) = x2P(x — 2)?

An example of an algebraic function occurs in the theory of relativity. The mass of a

particle with velocity v is
mo

m=f(v) = ————f————l v

where my is the rest mass of the particle and ¢ = 3.0 X 10° km/s is the speed of light in
a vacuum.

TRIGONOMETRIC FUNCTIONS

Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also
in Appendix D. In calculus the convention is that radian measure is always used (except
when otherwise indicated). For example, when we use the function f(x) = sin x, itis under-
stood that sin x means the sine of the angle whose radian measure is x. Thus the graphs of
the sine and cosine functions are as shown in Figure 18.

FIGURE 18

i /\ o
rN\__3r 2m ZM %
2 2 2

(b) g(x)=cosx

Notice that for both the sine and cosine functions the domain is (—o0, ) and the rang
is the closed interval [—1, 1]. Thus, for all values of x, we have

—1<cosx=1 J

|cosx| =<1

or, in terms of absolute values,
|sinx| <1
Also, the zeros of the sine function occur at the integer multiples of r; that 1s,

sinx =0 when x = nm naninteger




FIGURE 19
y=tan x
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An important property of the sine and cosine functions is that they are periodic func-
tions and have period 2. This means that, for all values of x,

sin(x + 2) = sin x cos(x + 2m) = cos x

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 4 in
Section 1.3 we will see that a reasonable model for the number of hours of daylight in
Philadelphia ¢ days after January 1 is given by the function

2
8si
L =12 +2 8s1n[——365 (t — 80)]

The tangent function is related to the sine and cosine functions by the equation

sin x

fan.x. =
COS X

and its graph is shown in Figure 19. It is undefined whenever cos X = 0, that is, when
x = +7/2, +3m/2, . ... Itsrangeis (—, %), Notice that the tangent function has period 7r:

tan(x + ) = tan x for all x
The remaining three trigonometric functions (cosecant, secant, and cotangent) are

the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in
Appendix D.

EXPONENTIAL FUNCTIONS

The exponential functions are the functions of the form f(x) = a*, where the base a is a
positive constant. The graphs of y = 2* and y = (0.5)" are shown in Figure 20. In both
cases the domain is (—@, ) and the range is (0, ).

(a)y=2" (b) y=1(0.5)"

Exponential functions will be studied in detail in Section 1.5, and we will see that they
are useful for modeling many natural phenomena, such as population growth (ifa>1)
and radioactive decay (if a < 1).
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LOGARITHMIC FUNCTIONS

y=log, x

The logarithmic functions f(x) = log.x, where the base a is a positive constant, are
inverse functions of the exponential functions. They will be studied in Section 1.6. I
ure 21 shows the graphs of four logarithmic functions with various bases. In each case
domain is (0, ), the range is (—, o), and the function increases slowly when x > 1.

y=log;x

TRANSCENDENTAL FUNCTIONS

These are functions that are not algebraic. The set of transcendental functions includes
trigonometric, inverse trigonometric, exponential, and logarithmic functions, but it
includes a vast number of other functions that have never been named. In Chapter 11

; FIGURE 21 b ;
will study transcendental functions that are defined as sums of infinite series.

L] EXAMPLE 5 Classify the following functions as one of the types of functions that we
have discussed.

(a) f(x) =57 (b) g(x) = x°

1 == x
h —_ —_—
(c) h(x) 1 — \/;
SOLUTION
(a) f(x) = 5" is an exponential function. (The x is the exponent.)
(b) g(x) = x> is a power function. (The x is the base.) We could also consider it to b
polynomial of degree 5.

@d u@®)y=1-1t+ 5t

1rx lgebraic functi
is an algebraic runction.

d u@®)=1-1+ 5t* is a polynomial of degree 4.

(c) h(x) =

EXERCISES

1-2 Classify each function as a power function, root function, 3-4 Match each equation with its graph. Explain your choice
polynomial (state its degree), rational function, algebraic function, (Don’t use a computer or graphing calculator.)
trigonometric function, exponential function, or logarithmic 2 s .8
fnetion. Bl@ y=x (b)) y=x ©y=x
I (@) f(x) = (b) glx) = V1 = x? 4 g/:
1
2.+ 1 '
(©) h(x) = x° + x* @ r(x) = 5—
%> +%
(e) s(x) = tan 2x (f) t(x) = logiox
x—6 % 0 X
‘ 2. (@y= )= x +
| (@) y T 6 b)) y=x \/;j_l
(c) y = 10 @ y=x" f

ey=2+t"—m (f) y=cos 6 + sin 6
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4. (a)y=3x (b)y=3
©y=x d y=1x

(5]

(a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.

(b) Find an equation for the family of linear functions such
that £(2) = 1 and sketch several members of the family.

(c) Which function belongs to both families?

. What do all members of the family of linear functions

f(x) =1 + m(x + 3) have in common? Sketch several mem-
bers of the family.

. What do all members of the family of linear functions

f(x) = ¢ — x have in common? Sketch several members of
the family.

. Find expressions for the quadratic functions whose graphs are

shown.

24 I

\ Y.
(-2,2)
V //\Nun
0
g

(1,-2.5)

. Find an expression for a cubic function f if f(1) = 6 and

f(=1) =f(0) =f(2) = 0.

Recent studies indicate that the average surface tempera-

ture of the earth has been rising steadily. Some scientists

have modeled the temperature by the linear function

T = 0.02¢ + 8.50, where T is temperature in °C and ¢ repre-

sents years since 1900.

(a) What do the slope and T-intercept represent?

(b) Use the equation to predict the average global surface
temperature in 2100.

- If the recommended adult dosage for a drug is D (in mg),

then to determine the appropriate dosage ¢ for a child of
age a, pharmacists use the equation ¢ = 0.0417D(a + 1).
Suppose the dosage for an adult is 200 mg.

(a) Find the slope of the graph of c. What does it represent?
(b) What is the dosage for a newborn?

12.

e 35

The manager of a weekend flea market knows from past
experience that if he charges x dollars for a rental space at the
market, then the number y of spaces he can rent is given by
the equation y = 200 — 4x.

(a) Sketch a graph of this linear function. (Remember that the
rental charge per space and the number of spaces rented
can’t be negative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of
the graph represent?

. The relationship between the Fahrenheit (F) and Celsius (©)

temperature scales is given by the linear function

F=3C+ 32

(a) Sketch a graph of this function.

(b) What is the slope of the graph and what does it represent?
What is the F-intercept and what does it represent?

. Jason leaves Detroit at 2:00 pM and drives at a constant speed

west along I-96. He passes Ann Arbor, 40 mi from Detroit, at
2:50 M.

(a) Express the distance traveled in terms of the time elapsed.
(b) Draw the graph of the equation in part (a).

(c) What is the slope of this line? What does it represent?

(15.] Biologists have noticed that the chirping rate of crickets of a

certain species is related to temperature, and the relationship

appears to be very nearly linear. A cricket produces 113 chirps

per minute at 70°F and 173 chirps per minute at 80°F.

(a) Find a linear equation that models the temperature T as a
function of the number of chirps per minute N.

(b) What is the slope of the graph? What does it represent?

(c) If the crickets are chirping at 150 chirps per minute, esti-
mate the temperature.

. The manager of a furniture factory finds that it costs $2200

to manufacture 100 chairs in one day and $4800 to produce

300 chairs in one day.

(a) Express the cost as a function of the number of chairs
produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?

(c) What is the y-intercept of the graph and what does it
represent?

[17.] At the surface of the ocean, the water pressure is the same as

the air pressure above the water, 15 Ib/ in®. Below the surface,

the water pressure increases by 4.34 Ib/in’ for every 10 ft of

descent.

(a) Express the water pressure as a function of the depth
below the ocean surface.

(b) At what depth is the pressure 100 Ib/in*?
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18. The monthly cost of driving a car depends on the number of

miles driven. Lynn found that in May it cost her $380 to drive

480 mi and in June it cost her $460 to drive 800 mi.

(a) Express the monthly cost C as a function of the distance
driven d, assuming that a linear relationship gives a suit-
able model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the
slope represent?

(d) What does the y-intercept represent?

(e) Why does a linear function give a suitable model in this
situation?

19-20 For each scatter plot, decide what type of function you
might choose as a model for the data. Explain your choices.

19. (a) (b)

Yy

21. The table shows (lifetime) peptic ulcer rates (per 100 popula-

tion) for various family incomes as reported by the National
Health Interview Survey.

Ulcer rate
Income (per 100 population)

$4,000 14.1
$6,000 | 13.0
$8,000 13.4
$12,000 | 12:5
$16,000 12.0
$20,000 12.4
$30,000 10.5
$45,000 9.4
$60,000 \ 8.2

(a) Make a scatter plot of these data and decide whether a
linear model is appropriate.

(b) Find and graph a linear model using the first and last data
points.

(c) Find and graph the Jeast squares regression line.

(d) Use the linear model in part (¢) to estimate the ulcer rate
for an income of $25,000.

(e) According to the model, how likely is someone with an
income of $80,000 to suffer from peptic ulcers?

(f) Do you think it would be reasonable to apply the model
to someone with an income of $200,000?

[A422. Biologists have observed that the chirping rate of crickets of

a certain species appears t0 be related to temperature. The
table shows the chirping rates for various temperatures.

Temperature Chirping rate
(°F) (chirps/min)

50 20
55
60
65
70

Chirping rate
(chirps/min)

Temperature

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the chirping
rate at 100°F.

@ 23. The table gives the winning heights for the Olympic pole

vault competitions in the 20th century.

Height (ft)

Height (ft)

1956

10.83 14.96
11.48 1960 15.42
12.19 1964 16.73
12.96 1968 17.71
13.42 1972 18.04
12.96 1976 18.04
13.77 1980 18.96
14.15 1984 18.85
14.27 1988 19.77
14.10 1992 19.02
14.92 1996 19.42

(a) Make a scatter plot and decide whether a linear model is
appropriate.

(b) Find and graph the regression line.

(c) Use the linear model to predict the height of the winning
pole vault at the 2000 Olympics and compare with the
actual winning height of 19.36 feet.

(d) Is it reasonable to use the model to predict the winning
height at the 2100 Olympics?

G o S A




E 24. A study by the US Office of Science and Technology in

1972 estimated the cost (in 1972 dollars) to reduce auto-
mobile emissions by certain percentages:

Reduction in
emissions (%)

Cost per
car (in $)

Reduction in
emissions (%)

50
55
60
65

70
Find a model that captures the “diminishing returns” trend of
these data.

Cost per \
car (in $)

25. Use the data in the table to model the population of the world

" in the 20th century by a cubic function. Then use your model
to estimate the population in the year 1925.

f_‘_'l;ﬁr—_" = T —
\ ‘ Population hPopulation
L Year (millions) Year (millions)

\ 1900

3040
| 1910 | 3710
| 1920 \ 1980 l 4450 ‘
| 1930 Il 1990 5280
| 1940 2300 || 2000 6080
| 1950 | 2560 JL ~ }
Y I

N
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26. The table shows the mean (average) distances d of the planets
from the sun (taking the unit of measurement to be the
distance from the earth to the sun) and their periods T (time

of revolution in years).
d T
0.387 0.241

Planet

Mercury

Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 84.008
Neptune 164.784

(a) Fit a power model to the data.
(b) Kepler’s Third Law of Planetary Motion states that

“The square of the period of revolution of a planet is
proportional to the cube of its mean distance from the

”»

sumn.

Does your model corroborate Kepler’s Third Law?

1.3| NEW FUNCTIONS FROM OLD FUNCTIONS

In this section we start with the basic functions we discussed in Section 1.2 and obtain new
functions by shifting, stretching, and reflecting their graphs. We also show how to combine

pairs of functions by the standard arithmetic operations and by composition.

TRANSFORMATIONS OF FUNCTIONS

By applying certain transformati
graphs of certain related function
many functions quickly by hand. It will a
Let’s first consider translations. If ¢ is a posit
just the graph of y = f (x) shifted upward a distance of ¢ units (because each y-coordinate

ons to the graph of a given function we can obtain the
s. This will give us the ability to sketch the graphs of
1so enable us to write equations for given graphs.
ive number, then the graph of y = f(x) + cis

is increased by the same number c). Likewise, if g(x) = f(x — ¢), where ¢ > 0, then the
value of g at x is the same as the value of f at x — ¢ (c units to the left of x). Therefore,
the graph of y = f(x — ¢) is just the graph of y = f(x) shifted ¢ units to the right (see
Figure 1).

VERTICAL AND HORIZONTAL SHIFTS Suppose ¢ > 0. To obtain the graph of T
y = f(x) + c, shift the graph of y = f(x) a distance c units upward l
y = f(x) — ¢, shift the graph of y = f (x) a distance ¢ units downward
y = f(x — c), shift the graph of y = f (x) a distance c units to the right
y = f(x + ¢), shift the graph of y = f(x) a distance c units to the left
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y y
y=fx+c /\ y=cf(x)
A/\/ [ Ve
| /
|
flx+0) cly flx—rc) Y=
' SN | S
f[—\—/—‘%/——\—/"ﬂ e y=Lm)
|
0 c : X 0 ;
| -
LN\ y=fw—e
' y==fx)
FIGURE | FIGURE 2
Translating the graph of f Stretching and reflecting the graph of f

Now let’s consider the stretching and reflecting transformations. If ¢ > 1, then the
graph of y = c¢f(x) is the graph of y = f(x) stretched by a factor of ¢ in the vertical
direction (because each y-coordinate is multiplied by the same number c¢). The graph of
y = —f(x) is the graph of y = f(x) reflected about the x-axis because the point (x, y) is
replaced by the point (x, —y). (See Figure 2 and the following chart, where the results of
other stretching, compressing, and reflecting transformations are also given.)

\
|  VERTICAL AND HORIZONTAL STRETCHING AND REFLECTING Suppose ¢ > 1. To ,
obtain the graph of l

y = cf(x), stretch the graph of y = f(x) vertically by a factor of ¢

y = (1/¢)f(x), compress the graph of y = f(x) vertically by a factor of ¢
y = f(cx), compress the graph of y = f(x) horizontally by a factor of ¢
y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of ¢

y = —f(x), reflect the graph of y = f(x) about the x-axis

y = f(—x), reflect the graph of y = f(x) about the y-axis

Figure 3 illustrates these stretching transformations when applied to the cosine function
with ¢ = 2. For instance, in order to get the graph of y = 2 cos x we multiply the y-coor-
dinate of each point on the graph of y = cosx by 2. This means that the graph of y = cos x
gets stretched vertically by a factor of 2.

y y=2cosx Y4

y=cosx

1
==/coS
y=3 x

y=cosx

FIGURE 3 y=cos2x




(a) y=\/x

FIGURE 4

FIGURE 6

®) y=+x—2

FIGURE 5
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3 EXAMPLE | Given the graph of y = \/}— , use transformations to graphy = \/; -2,

y=\/x—2,y=—\/;,y=2\/;,andy: —X.:

50LUTION The graph of the square root function y = \/; , obtained from Figure 13(a)
in Section 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch

= \/; — 2 by shifting 2 units downward, y = VX — 2 by shifting 2 units to the right,
y = ——\/; by reflecting about the x-axis, y = 2./x by stretching vertically by a factor
of 2,and y = \/——_x_ by reflecting about the y-axis.

©y=vx—2 dy=—x (©y=2vx

EXAMPLE 2 Sketch the graph of the function f(x) = x> + 6x + 10.
SOLUTION Completing the square, We write the equation of the graph as
y=x*+6x+ 10=(x +37>+1

This means we obtain the desired graph by starting with the parabola y = x? and shifting
3 units to the left and then 1 unit upward (see Figure 5).

y \/y
N

(-3,1)
=3 -1
@y=x ®)y=(@+37+1 O
EXAMPLE 3 Sketch the graphs of the following functions.
(a) y = sin2x (b) y=1—sinx
SOLUTION

(a) We obtain the graph of y = sin 2x from that of y = sin x by compressing horizon-
tally by a factor of 2 (see Figures 6 and 7). Thus, whereas the period of y = sinx is 2,

the period of y = sin2x is 2m/2 = .

Y

FIGURE 7

{
I
I
{
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(b) To obtain the graph of y = 1 — sin x, we again start with y = sin x. We reflect
about the x-axis to get the graph of y = —sin x and then we shift 1 unit upward to get
y = 1 — sin x. (See Figure 8.)

y=1—sinx

0} E" T 37 2w I X
2 2 [

FIGURE 8
EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of the

time of the year at several latitudes. Given that Philadelphia is located at approximately
40°N latitude, find a function that models the length of daylight at Philadelphia.

20 .
[ ' }
\\
16 ; -
AERD/ NN
12 -
NNt | 20°N
Hours 10 P~ 30°N
\ S| | 40°N
B - 50°N
6 . o
FIGURE 9 60°N
Graph of the length of daylight 4 '
from March 21 through December 21 ) |
at various latitudes :
Lucia C. Harrison, Daylight, Twilight, Darkness and Time 0 ‘ | | I, e
(New York: Silver, Burdett, 1935) page 40 Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By look-
ing at the blue curve we see that, at the latitude of Philadelphia, daylight lasts about
14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of the curve (the
factor by which we have to stretch the sine curve vertically) is %(14.8 —9.2) =28.

By what factor do we need to stretch the sine curve horizontally if we measure the
time 7 in days? Because there are about 365 days in a year, the period of our model
should be 365. But the period of y = sin? is 2, so the horizontal stretching factor is
c = 2m/365.

We also notice that the curve begins its cycle on March 21, the 80th day of the year,
so we have to shift the curve 80 units to the right. In addition, we shift it 12 units
upward. Therefore we model the length of daylight in Philadelphia on the tth day of the
year by the function

2
=12 + 2.8sin| —( — 80 |
L(?) 2 28sm|:365(t 8)}

Another transformation of some interest is taking the absolute value of a function.
y = | f(x)], then according to the definition of absolute value, y = f(x) when f(x) = Oar
y = —f(x) when f(x) < 0. This tells us how to get the graph of y = | ()| from the gray
of y = f(x): The part of the graph that lies above the x-axis remains the same; the part th
lies below the x-axis is reflected about the x-axis.




®)y=1x"—1|

FIGURE 10

X (input)

flg(x)) (output)
FIGURE 11

The fog machine is composed of
the ¢ machine (first) and then
the f machine.
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I EXAMPLE 5 Sketch the graph of the function y = |x* — 1|.

SOLUTION We first graph the parabola y = x? — 1 in Figure 10(a) by shifting the parabola
y = x* downward 1 unit. We see that the graph lies below the x-axis when —1 < x < 1,
so we reflect that part of the graph about the x-axis to obtain the graph of y = |x* = 1
in Figure 10(b).

COMBINATIONS OF FUNCTIONS

Two functions f and g can be combined to form new functions f + g, f—g, fg,and f/g in
a manner similar to the way we add, subtract, multiply, and divide real numbers. The sum
and difference functions are defined by

(f + 9x) = f(x) + g0 (f — 9 = fx) = g(x)

If the domain of f is A and the domain of g is B, then the domain of f + g is the intersec-
tion A N B because both f(x) and g(x) have to be defined. For example, the domain of
flx) = Jx isA = [0, ») and the domain of g(x) = V2 — xisB = (—o0, 2], so the domain
of (f+ 9@ =vx +vV2—xisANB= [0, 2].

Similarly, the product and quotient functions are defined by

(fa)() = F(Dg(®) <1>(x) _ /@
g g(x)

The domain of fg is A N B, but we can’t divide by O and so the domain of f/g is
{x € AN B|gx) # 0}. For instance, if f(x) = x%and g(x) = x — 1, then the domain of
the rational function (f/g)(x) = x*/(x — 1) is {x|x # 1}, or (=, 1)U (1, ).

There is another way of combining two functions to obtain a new function. For
example, suppose that y = fw) = \/; and u = g(x) = x> + 1. Since y is a function of u
and u is, in turn, a function of x, it follows that y is ultimately a function of x. We compute
this by substitution:

y = f) = f(gl) = fx* + 1) = Va2 + 1

The procedure is called composition because the new function is composed of the two
given functions f and g.

In general, given any two functions f and g, we start with a number x in the domain of
g and find its image g(x). If this number g(x) is in the domain of f, then we can calculate
the value of f(g(x)). The result is a new function h(x) = f(g(x)) obtained by substituting
g into f. It is called the composition (or composite) of f and g and is denoted by fog

(“f circle 7).

\ DEFINITION Given two functions f and g, the composite function f° g (also called
] the composition of f and g) is defined by

(Fo 9)(x) = Fg(x)) |
/

The domain of f° g is the set of all x in the domain of g such that g(x) is in the domain
of f. In other words, (f° g)(x) is defined whenever both g(x) and f(g(x)) are defined. Fig-
ure 11 shows how to picture fe g in terms of machines. '
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EXAMPLE 6 If f (x) = x* and glx) =x ~ 3, find the composite functions f° g
and g °f-

SOLUTION We have
(fo 9 = f(g) = flx ~ 3) = (x—3)
(gef)x) = g(fx) = g(x*) = =3 O

@ You can see from Example 6 that, in general, f°9 #gof. Remember, the

notation f© g means that the function g is applied first and then f is applied second. In

Example 6, f° 9 s the function that first subtracts 3 and then squares; g ° f is the function
that first squares and then subtracts 3.

7 EXAMPLE 7 Ef(x)= \/; and g(x) = N2 X5 find each function and its domain.
(a) fo9g ) geof () fof (d g°9

SOLUTION
(@) (e ) = F(g) =FV2 )=V
The domain of f°¢ is{x|2—x= o} = {x|x= 2} = (~, 2.

(b) (gof)) = g(f() = A7) =2

For \/; to be defined we must have x = 0. Forv2 — Jx tobe defined we must have
1f0 < a < b, then a? < b 2 — \/; = (), that is, \/; <2, 0rx=< 4. Thus we have 0<x<4,5s0 the domain of
gofisthe closed interval [0, 4.

©) (fo f)(x) = FF@) = f(Jx) = VE =
The domain of f°f i [0, ).
@ (g°9)®) =99 = g2 —x) =2~ J2— X

This expression i8 defined when both 72— x=0and2 ~ J2—x = 0. The first
inequality means X < 2, and the second is equivalent t0 J2—x <20 2 —x<4or
x= —2.Thus —2 <X < 2, so the domain of g ° g is the closed interval [—2, 2]. O

It is possible to take the composition of three or more functions. For instance, the com-
posite function feg°h is found by first applying h. then g, and then f as follows:

(fegem® =f (g(h(x))

EXAMPLE 8 Find f°g° nif f(x) = x/(x + 1), g9x) = X0 and h(x) = X T 3.

SOLUTION (fegeh® =f (g(h(x)) = flglx + 3))
B o (X + 3)10
=f(x+3") = ’(;ZT)*TTT L

So far we have used composition t0 build complicated functions from simpler ones. B
in calculus it is often useful to be able to decompose 2 complicated function into simpl
ones, as in the following example.
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EXAMPLE 9 Given F(x) = cos*(x + 9), find functions f, g, and & such that F = fo g o h.

SOLUTION Since F(x) = [cos(x + 9)]% the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

h(x) =x+9

Then

fx)=x*

g(x) = cos x

(fegeh(x) =f(g(h(x) = f(g(x +9)) = flcos(x + 9))

1.3 | EXERCISES

= [cos(x + 9)]* = F(x) O

[1.] Suppose the graph of f is given. Write equations for the graphs
that are obtained from the graph of f as follows.
(a) Shift 3 units upward.
(b) Shift 3 units downward.
(c) Shift 3 units to the right.
(d) Shift 3 units to the left.
(e) Reflect about the x-axis.
(f) Reflect about the y-axis.
(g) Stretch vertically by a factor of 3.
(h) Shrink vertically by a factor of 3.

2. Explain how each graph is obtained from the graph of y = f(x).

@ y=5f(x) ®) y=f(x—5)
©y=—f() d) y=-5f(x)
() y = f(5x) (f) y=5f(x) =3

3. The graph of y = f(x) is given. Match each equation with its
graph and give reasons for your choices.

@y=flx—4 (b) y=f(x) +3
©y=73f(x) d y=—f(x+4)
(e) y=2f(x + 6)
@
©)]
+ —56 + ﬁ‘.3 - +—+ 6 )
/]
73 -
®

4. The graph of f is given. Draw the graphs of the following
functions.

@y=f(x+4) () y=f(x) +4

© y=2f(x) @ y=—3f(x) +3

AL N
EEEEDEN

[5.] The graph of f is given. Use it to graph the following

3

functions.

(@) y = f(2x) ) y=f(3x)

(© y=f(-x @ y=—f(-x)
17 B L1
rfﬁ>- T
Hl* 1N S I

1 |
iw. - S AN N
I

|

6-7 The graph of y = {/3x — x2 is given. Use transformations to
create a function whose graph is as shown.

b 4
— AT 22
1.5 y=\3x-x
0 3 X
6 y (7] )’T
’ —4 B
\ i
"x U —2.5
0 2 5 X
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8. (a) How is the graph of y = 2 sin x related to the graph of
y = sinx? Use your answer and Figure 6 to sketch the
graph of y = 2 sin x.
(b) How is the graph of y = 1 + Vx related to the graph of
y= /x 7 Use your answer and Figure 4(a) to sketch the
graphof y =1 + V.

9-24 Graph the function by hand, not by plotting points, but by
starting with the graph of one of the standard functions given in Sec-
tion 1.2, and then applying the appropriate transformations.

9. y=—x’ 10 y=1—x?

i y=(x+1y 12. y=x2—4x+3

13. y=1+ 2cosx 14. y = 4 sin 3x

[I5] y = sin(x/2) 16. y = !

S x—4

17. y=v/x+3 18. y=(x+2)°*+3

19. y =2 (x% + 8x) 20 y=1+x—-1

2l y= - 22, y=ltan<x—1>
x+1 4 4

23. y = [sin x| 24, y = |x* — 2x|

25. The city of New Orleans is located at latitude 30°N. Use Fig-
ure 9 to find a function that models the number of hours of
daylight at New Orleans as a function of the time of year. To
check the accuracy of your model, use the fact that on March 31
the sun rises at 5:51 AM and sets at 6:18 PM in New Orleans.

26. A variable star is one whose brightness alternately increases
and decreases. For the most visible variable star, Delta Cephei,
the time between periods of maximum brightness is 5.4 days,
the average brightness (or magnitude) of the star is 4.0, and its
brightness varies by =0.35 magnitude. Find a function that
models the brightness of Delta Cephei as a function of time.

[27.] (a) How is the graph of y =f(lx |) related to the graph of f?
(b) Sketch the graph of y = sin | x|.
(c) Sketch the graph of y = /| x]|.

28. Use the given graph of f to sketch the graph of y = 1/f(x).
Which features of f are the most important in sketching
y = 1/f(x)? Explain how they are used.

y

b

VA

29-30 Find f + g, f — g, fg, and f/g and state their domains.
29 f(x) = x>+ 2x% g(x) =3x*—1

30. f(x) =43 —x, gx)=+x*—1

31-36 Find the functions (a) fog, (b)geof,(c) fef,and(d)geg
and their domains. )

3l. f(x)=x2-1, gx) =2x+1

32. f(x) =x—2, gx)=x2+3x+4

1 4]
B8] f() =x + — 909 =
36. f(x) = ix’ g(x) = sin 2x

37-40 Find fog-o° h.
37. f(x) =x+ 1, glx)=2x, h(x)=x-—1

38. f(x) =2x—1, gx)=x% hx)=1-x
39. f(x) =v/x =3, gx)=x%* hx)=x*+2

40. f(x) = tanx, g(x) = —/‘%, h(x) = ¥x

41-46 Express the function in the form fo g.
41. F(x) = (x> + 1)° 42. F(x) = sin(v/x)

% =

43. F(x) =ﬁ_\3/—; 44. G(x) = 4 T+

X

tan ¢
1 + tant

45. u(t) = Jcost [46.] u(r) =

47-49 Express the function in the form fo g ° h.
47. H(x) =1 - 3° 48. H(x) = ¥2 + |x|
49. H(x) = sec*(vx)

50. Use the table to evaluate each expression.

(a) f(g(1)) (b) g(f(1))
(d) g(g(1)) (e) (g°f)3)

(¢) f(f(1)
(f) (f°9)(6)

f(x) 3 1 - 2 2 5

g(x) 6 3 2 1 2 3
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Use the given graphs of f and g to evaluate each expression,
or explain why it is undefined.

@ f(9(2) (b) g(£(0))

@ (g°1)(6) (e) (g°9)(=2)

] y

(©) (f°9)0)
(f) (fo)@)

52. Use the given graphs of f and g to estimate the value of

=

54,

f(g(x)) forx = =5, —4, =3, ..., 5. Use these estimates to
sketch a rough graph of fe g.
RN
e N
Ly
0 1 X
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travels outward at a speed of 60 cm/s.

(a) Express the radius r of this circle as a function of the
time ¢ (in seconds).

(b) If A is the area of this circle as a function of the radius, find
A ° r and interpret it.

A spherical balloon is being inflated and the radius of the bal-

loon is increasing at a rate of 2 cm/s.

(a) Express the radius 7 of the balloon as a function of the time
t (in seconds).

(b) If V is the volume of the balloon as a function of the radius,
find V o r and interpret it.

« A ship is moving at a speed of 30 km/h parallel to a straight

shoreline. The ship is 6 km from shore and it passes a light-

house at noon.

(a) Express the distance s between the lighthouse and the ship
as a function of d, the distance the ship has traveled since
noon; that is, find f so that s = f(d).

(b) Express d as a function of ¢, the time elapsed since noon;
that is, find g so that d = g(¢).

(c) Find feo g. What does this function represent?

- An airplane is flying at a speed of 350 mi/h at an altitude of

one mile and passes directly over a radar station at time ¢ = 0.

(a) Express the horizontal distance d (in miles) that the plane
has flown as a function of z.

(b) Express the distance s between the plane and the radar
station as a function of d.

(¢) Use composition to express s as a function of .
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57.

58.

59.

60.

6l.

62.

63.

64.

The Heaviside function H is defined by

H) = 0 ift<O0
1 ift=0

It is used in the study of electric circuits to represent the sudden
surge of electric current, or voltage, when a switch is instantane-
ously turned on.

(a) Sketch the graph of the Heaviside function.

(b) Sketch the graph of the voltage V(?) in a circuit if the
switch is turned on at time ¢ = 0 and 120 volts are applied
instantaneously to the circuit. Write a formula for V(z) in
terms of H(f).

(c) Sketch the graph of the voltage V(z) in a circuit if the switch
is turned on at time r = 5 seconds and 240 volts are applied
instantaneously to the circuit. Write a formula for V() in
terms of H(z). (Note that starting at t = 5 corresponds to a
translation.)

The Heaviside function defined in Exercise 57 can also be used
to define the ramp function y = ctH(z), which represents a
gradual increase in voltage or current in a circuit.

(a) Sketch the graph of the ramp function y = tH(f).

(b) Sketch the graph of the voltage V(¢) in a circuit if the switch
is turned on at time ¢ = 0 and the voltage is gradually
increased to 120 volts over a 60-second time interval. Write
a formula for V() in terms of H(¢) for t < 60.

(c) Sketch the graph of the voltage V(¢) in a circuit if the switch
is turned on at time ¢ = 7 seconds and the voltage is gradu-
ally increased to 100 volts over a period of 25 seconds.
Write a formula for V(¢) in terms of H(z) for ¢t < 32.

Let f and g be linear functions with equations f(x) = mx + b,
and g(x) = max + by. Is f° g also a linear function? If so, what
is the slope of its graph?

If you invest x dollars at 4% interest compounded annually, then
the amount A(x) of the investment after one year is A(x) = 1.04x.
Find A°cA,A°A°A ,and A > A °A o A. What do these compo-
sitions represent? Find a formula for the composition of n
copies of A.

(a) If g(x) = 2x + 1 and h(x) = 4x*> + 4x + 7, find a function
f such that fo g = h. (Think about what operations you
would have to perform on the formula for g to end up with
the formula for A.)

(b) If f(x) = 3x + 5 and h(x) = 3x> + 3x + 2, find a function
g such that fe g = h.

If f(x) = x + 4 and h(x) = 4x — 1, find a function g such that
gof=nh
(a) Suppose f and g are even functions. What can you say about

f+ gand fg?
(b) What if f and g are both odd?

Suppose f is even and g is odd. What can you say about fg?

[65.] Suppose g is an even function and let & = fo g. Is h always an

66.

even function?

Suppose g is an odd function and let h = fo g. Is h always an
odd function? What if f is odd? What if f is even?
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(a,d) y=d (b,d)
x=a x=b
(a,c) y=c (b, c)
FIGURE |

The viewing rectangle [a, b] by [c, d]

=2

(a) [—2v 2] by [—27 2]

N |

(b) [-4,4] by [-4,4]

FIGURE 2 Graphs of f(x)= x>+ 3

In this section we assume that you have access to a graphing calculator or a computer w
graphing software. We will see that the use of such a device enables us to graph more co
plicated functions and to solve more complex problems than would otherwise be possib
We also point out some of the pitfalls that can dccur with these machines.

Graphing calculators and computers can give very accurate graphs of functions. But
will see in Chapter 4 that only through the use of calculus can we be sure that we ha
uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph of a fur
tion in a display window or viewing screen, which we refer to as a viewing rectang
The default screen often gives an incomplete or misleading picture, so it is important
choose the viewing rectangle with care. If we choose the x-values to range from a mi
mum value of Xmin = a to a maximum value of Xmax = b and the y-values to range frc
a minimum of Ymin = c to a maximum of Ymax = d, then the visible portion of the gra
lies in the rectangle

[a,b] X [c,d]={(x,y) |asx<b,c<sy=<d}

shown in Figure 1. We refer to this rectangle as the [a, b] by [c, d] viewing rectangle.

The machine draws the graph of a function f much as you would. It plots points of t
form (x, f(x)) for a certain number of equally spaced values of x between a and b. If
x-value is not in the domain of f, or if f(x) lies outside the viewing rectangle, it moves
to the next x-value. The machine connects each point to the preceding plotted point to for
a representation of the graph of f.

EXAMPLE | Draw the graph of the function f(x) = x* + 3 in each of the following
viewing rectangles.

(@) [-2,2]by[-2,2]
(c) [~10, 10] by [—S5, 30]

(b) [~4,4] by [-4,4]
(d) [~50, 50] by [—100, 1000]

SOLUTION For part (a) we select the range by setting Xmin = —2, Xmax = 2, Ymin = -
and Ymax = 2. The resulting graph is shown in Figure 2(a). The display window is
blank! A moment’s thought provides the explanation: Notice that x*> = 0 for all x, so
x? + 3 = 3 for all x. Thus the range of the function f(x) = x*> + 3 is [3, ©). This
means that the graph of f lies entirely outside the viewing rectangle [—2, 2] by [—2, 2]

The graphs for the viewing rectangles in parts (b), (c), and (d) are also’ shown in
Figure 2. Observe that we get a more complete picture in parts (c) and (d), but in part (c
it is not clear that the y-intercept is 3.

30 1000

10

~C ) ~s01 550
-5 -100

(c) [<10,10] by [-5, 30] (d) [-50, 50] by [-100, 1000]
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We see from Example 1 that the choice of a viewing rectangle can make a big differ-
ence in the appearance of a graph. Often it’s necessary to change to a larger viewing
rectangle to obtain a more complete picture, a more global view, of the graph. In the next
example we see that knowledge of the domain and range of a function sometimes provides
us with enough information to select a good viewing rectangle.

EXAMPLE 2 Determine an appropriate viewing rectangle for the function
f(x) = /8 — 2x? and use it to graph f.

SOLUTION The expression for f(x) is defined when

§—2x2=0 <& 2u?<8 & x*<4

& |x|=2 & —2=x=2
Therefore the domain of f is the interval [—2, 2]. Also,
0< . /8- 22 <.8=2,2=283

so the range of f is the interval [0, FniD. ]

We choose the viewing rectangle so that the x-interval is somewhat larger than the
domain and the y-interval is larger than the range. Taking the viewing rectangle to be
[—3, 3] by [—1, 4], we get the graph shown in Figure 3. O

EXAMPLE 3 Graph the function y = x> — 150x.

SOLUTION Here the domain is R, the set of all real numbers. That doesn’t help us choose a
viewing rectangle. Let’s experiment. If we start with the viewing rectangle [—5, 5] by
[—5, 5], we get the graph in Figure 4. It appears blank, but actually the graph is so
nearly vertical that it blends in with the y-axis.

If we change the viewing rectangle to [—20, 20] by [—20, 20], we get the picture
shown in Figure 5(a). The graph appears to consist of vertical lines, but we know that
can’t be correct. If we look carefully while the graph is being drawn, we see that the
graph leaves the screen and reappears during the graphing process. This indicates that
we need to see more in the vertical direction, so we change the viewing rectangle to
[—20, 20] by [—500, 500]. The resulting graph is shown in Figure 5(b). It still doesn’t
quite reveal all the main features of the function, so we try [—20, 20] by [—1000, 1000]
in Figure 5(c). Now we are more confident that we have arrived at an appropriate view-
ing rectangle. In Chapter 4 we will be able to see that the graph shown in Figure 5(c)
does indeed reveal all the main features of the function.

500 1000

20 —20 20

|
W
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w The appearance of the graphs in Figure 6
depends on the machine used. The graphs you
get with your own graphing device might not
look like these figures, but they will also be quite
inaccurate.

FIGURE 6

Graphs of f(x)= sin 50x
in four viewing rectangles

1.5

29 25

-1.5

FIGURE 7
f(x) = sin 50x
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7 EXAMPLE 4 Graph the function f(x) = sin 50x in an appropriate viewing rectangle.

SOLUTION Figure 6(a) shows the graph of f produced by a graphing calculator using the
viewing rectangle [—12, 12] by [—1.5, 1.5]. At first glance the graph appears to be rea-
sonable. But if we change the viewing rectangle to the ones shown in the following parts
of Figure 6, the graphs look very different. Something strange is happening.

1.5

~1.5
()

In order to explain the big differences in appearance of these graphs and to find an
appropriate viewing rectangle, we need to find the period of the function y = sin 50x.
We know that the function y = sin x has period 27 and the graph of y = sin 50x is
compressed horizontally by a factor of 50, so the period of y = sin 50x is

2
27 T~ 0126

This suggests that we should deal only with small values of x in order to show just a
oscillations of the graph. If we choose the viewing rectangle [—0.25, 0.25]by [—1.5,
we get the graph shown in Figure 7.

Now we see what went wrong in Figure 6. The oscillations of y = sin 50x are so 3]
that when the calculator plots points and joins them, it misses most of the maximum
minimum points and therefore gives a very misleading impression of the graph.

We have seen that the use of an inappropriate viewing rectangle can give a mislez
impression of the graph of a function. In Examples 1 and 3 we solved the proble:
changing to a larger viewing rectangle. In Example 4 we had to make the viewing
angle smaller. In the next example we look at a function for which there is no single

ing rectangle that reveals the true shape of the graph.

7 EXAMPLE 5 Graph the function f(x) = sinx + 106 cos 100x.

SOLUTION Figure 8 shows the graph of f produced by a graphing calculator with viewi
rectangle [—6.5, 6.5] by [—1.5, 1.5]. It looks much like the graph of y = sinx, but p
haps with some bumps attached. If we zoom in to the viewing rectangle [—0.1, 0.1]¢%
[—0.1, 0.1], we can see much more clearly the shape of these bumps in Figure 9. The




= Another way to avoid the extraneous line is to
change the graphing mode on the calculator so
that the dots are not connected.

FIGURE 10
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reason for this behavior is that the second term, 55 cos 100x, is very small in comparison

with the first term, sin x. Thus we really need two graphs to see the true nature of this Il
function. | i
0.1 It

nin L
VY,

=15 -0.1

FIGURE 8 FIGURE 9 O

1
1 —x

EXAMPLE 6 Draw the graph of the function y =

SOLUTION Figure 10(a) shows the graph produced by a graphing calculator with view-

ing rectangle [—9, 9] by [—9, 9]. In connecting successive points on the graph, the
calculator produced a steep line segment from the top to the bottom of the screen. That
line segment is not truly part of the graph. Notice that the domain of the function

y = 1/(1 — x) is {x| x # 1}. We can eliminate the extraneous near-vertical line by exper-
imenting with a change of scale. When we change to the smaller viewing rectangle
[—4.7,4.7] by [—4.7, 4.7] on this particular calculator, we obtain the much better graph
in Figure 10(b).

9 4.7
| -
9| r 9 —4.7 4.7
-9 —4.7
@ (b) 0

EXAMPLE 7 Graph the function y = ¥/x.

SOLUTION Some graphing devices display the graph shown in Figure 11, whereas others
produce a graph like that in Figure 12. We know from Section 1.2 (Figure 13) that the
graph in Figure 12 is correct, so what happened in Figure 11? The explanation is that
some machines compute the cube root of x using a logarithm, which is not defined if x
is negative, so only the right half of the graph is produced.

T = [
| I

[

FIGURE 11 FIGURE 12
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You should experiment with your own machine to see which of these two graphs is
produced. If you get the graph in Figure 11, you can obtain the correct picture by graph-
ing the function

fx) = N
||
Notice that this function is equal to 3/; (except when x = 0). El

To understand how the expression for a function relates to its graph, it’s helpful to graph
a family of functions, that is, a collection of functions whose equations are related. In the
next example we graph members of a family of cubic polynomials.

7 EXAMPLE 8 Graph the function y = ¥3 + cx for various values of the number c. How
does the graph change when ¢ is changed?

SOLUTION Figure 13 shows the graphs of y = } + exforc =2,1,0,—1,and —2. We see
that, for positive values of c, the graph increases from left to right with no maximum or
v minimum points (peaks or valleys). When ¢ = 0, the curve is flat at the origin. When ¢
m In¥isusl 14700 cart sesan is negative, the curve has a maximum point and a minimum point. As ¢ decreases, the
animation of Figure 13. : . . s A
maximum point becomes higher and the minimum point lower.

7 ] 1
T

(@) y=x>+2x ®)y=x*+x () y=x @y=x*-x (e)y=x—2x
FIGURE 13 O
Several membegs of the family of EXAMPLE 9 Find the solution of the equation cos x = x correct to tWo decimal places.
functions y = x* + cx, all graphed
in the viewing rectangle [—2, 2] SOLUTION The solutions of the equation cos x = x are the x-coordinates of the points of
by [-2.5,2.5] intersection of the curves y = cos x and y = x. From Figure 14(a) we see that there is

only one solution and it lies between 0 and 1. Zooming in to the viewing rectangle [0, 1]
by [0, 1], we see from Figure 14(b) that the root lies between 0.7 and 0.8. So we zoom in
further to the viewing rectangle [0.7, 0.8] by [0.7, 0.8] in Figure 14(c). By moving the
cursor to the intersection point of the two curves, or by inspection and the fact that the
x-scale is 0.01, we see that the solution of the equation is about 0.74. (Many calculators
have a built-in intersection feature.)

1.5

1
e *—v
y=cos x
. / \/ 5
o 1 0.8
FIGURE 14 =la ¢

Locating the roots (a) [-5,5]by [-1.5,1.5] () [0,1] by [0,1] (c) [0.7,0.8] by [0.7,0.8]
x-scale = 0.01 O

of cosx=x x-scale =1 x-scale = 0.1
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m 9 EXERCISES

). Usea graphing calculator or computer to determine which of

the given viewing rectangles produces the most appropriate
. graph of the function f(x) = Vx> = 5x%.

@ [-5.51by [=3 5] () [0, 10] by [0,2]

() [0, 10] by [0, 10]

3. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function f(x) = x* — 16x% + 20.

(@ [-3,3]by [-3, 3] (b) [-10, 10] by [~ 10, 10]
() [-50, 50] by [—50, 50]  (d) [—5,5]by [-50,50]

y 3-14 Determine an appropriate viewing rectangle for the given
function and use it to draw the graph.

3 f(x) =5+ 20x— x? 4. flx)=x+ 30x2 + 200x
5, f(x) = VBT — x* 6. f(x) = Jo1x + 20

7. f(x) = x* — 225x (8 f() = ;z‘:ﬁg

10. f(x) = cos(0.001x)

12. f(x) = sec(207rx)

14, y = x* + 0.02sin 50x

e

[9. f(x) = sin*(1000x)

1. f(x) = sin Vx
13. y = 10sinx + sin 100x

15. Graph the ellipse 4x” + 2y* = 1 by graphing the functions
whose graphs are the upper and lower halves of the ellipse.

16. Graph the hyperbola y> — 9x* = 1 by graphing the functions
whose graphs are the upper and lower branches of the hyperbola.

17-18 Do the graphs intersect in the given viewing rectangle?

; If they do, how many points of intersection are there?

B oy—3:2 - 6x+ 1, y=023%-225 [-1 3]by [-2.5, 1.5]

18. y=6 —4x — x?, y=3x+18; [—6,2]by [-5, 20]

~ 19-21 Find all solutions of the equation correct to twWo decimal
places.
-9 —-4=0 20, x*=4x— 1

: e
‘Zl.x = sinx

22. We saw in Example 9 that the equation cos X = X has exactly
one solution.
(a) Use a graph to show that the equation cos X = 0.3x has three
S(?lutions and find their values correct to two decimal places.
(b) Find an approximate value of m such that the equation
cos x = mx has exactly two solutions.

~~~~~ Use graphs to determine which of the functions flx) = 10x?
and g(x) = x*/10 is eventually larger (that is, larger when x is
very large).

24. Use graphs to determine which of the functions
flx)=x*— 100x° and g(x) = x* is eventually larger.

25. For what values of x is it true that |sinx — x| < 0.1?

26. Graph the polynomials P(x) =3x° — 5¢% + 2x and Q(x) = 3x’
on the same screen, first using the viewing rectangle [—2, 2] by
[—2, 2] and then changing to [—10, 10] by [—10,000, 10,000].
What do you observe from these graphs?

(27 In this exercise we consider the family of root functions

flx) = ifx, wherenisa positive integer.

(a) Graph the functions y = \/; )= {/; ,andy = 2/; on the
same screen using the viewing rectangle [- 1,41 by [—1, 3].

(b) Graph the functions y = X,y = Yx,andy = ¥/x on
the same screen using the viewing rectangle [—3, 3]
by [—2, 2]. (See Example 7.)

(c) Graph the functions y = \/; Y= \’/; ) = {/; , and
y= \5/; on the same screen using the viewing rectangle
[-1,31by[-1L, 2].

(d) What conclusions can you make from these graphs?

28. In this exercise we consider the family of functions

f(x) = 1/x", where n is a positive integer.

(a) Graph the functions y = 1/x and y = 1/x° on the same
screen using the viewing rectangle [—3, 3] by [-3,3]

(b) Graph the functions y = 1/x*and y = 1/x* on the same
screen using the same viewing rectangle as in part (a).

(c) Graph all of the functions in parts (a) and (b) on the same
screen using the viewing rectangle [-1,3]by [-1,3]

(d) What conclusions can you make from these graphs?

[29.) Graph the function f (x) = x* + cx* + x for several values
of c. How does the graph change when c changes?

30. Graph the function f (x) = 1 + cx? for various values
of c. Describe how changing the value of c affects the graph.

31. Graph the function y = x"2* x=0,forn=1,2, 3. 4.5,
and 6. How does the graph change as 1 increases?

32. The curves with equations

are called bullet-nose curves. Graph some of these curves to
see why. What happens as ¢ increases?

[33) What happens to the graph of the equation y>=cx® + x*as
c varies?

34. This exercise explores the effect of the inner function g on a
composite function y = f(g(x)).
(a) Graph the function y = sin(ﬁ ) using the viewing rect-
angle [0, 400] by [—1.5, 1.5). How does this graph differ
from the graph of the sine function?
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(b) Graph the function y = sin(x?) using the viewing rectangle
[-5,5]by [-1.5, 1.5). How does this graph differ from the
graph of the sine function?

35. The figure shows the graphs of y = gin 96x and y = sin 2x as
displayed by a TI-83 graphing calculator.
ANN

0 \//\ 27 0 \/
y=sin2x

y = sin 96x

The first graph is inaccurate. Explain why the two graphs
appear identical. [Hint: The TI-83’s graphing window is 95
pixels wide. What specific points does the calculator plot?]

REVIEW

36. The first graph in the figure is that of y = sin 45x as displayed
by a TI-83 graphing calculator. It is inaccurate and so, to help
explain its appearance, weé replot the curve in dot mode in the
second graph.

What two sine curves does the calculator appear to be plotting?
Show that each point on the graph of y = sin 45x that the T1-
83 chooses to plot is in fact on one of these two curves. (The
TI-83’s graphing window is 95 pixels wide.)

i CONCEPT CHECK

1. (a) Whatisa function? What are its domain and range?
(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of
a function?

2. Discuss four ways of representing a function. Illustrate your
discussion with examples.

3. (a) What is an even function? How can you tell if a function is
even by looking at its graph?
(b) What is an odd function? How can you tell if a function is
odd by looking at its graph?

4. What is an increasing function?
5. What is a mathematical model?

| 6. Give an example of each type of function.

(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 (f) Rational function

7. Sketch by hand, on the same axes, the graphs of the following

functions.
(a) flx) =x (b) g(x) = x
(©) h(x) = x* (@ jx)=x*

8. Draw, by hand, a rough sketch of the graph of each function.

(a) y = sinx (b) y = tanx
©y=2 @ y=1x
@ y=lx| (f) y=+x

9. Suppose that f has domain A and g has domain B.
(a) What is the domain of f + g7
(b) What is the domain of fg?
(c) What is the domain of f/g?

10. How is the composite function f o g defined? What is its
domain?

11. Suppose the graph of f is given. Write an equation for each of
the graphs that are obtained from the graph of f as follows.
(a) Shift 2 units upward.

(b) Shift 2 units downward.

(c) Shift 2 units to the right.

(d) Shift 2 units to the left.

(e) Reflect about the x-axis.

(f) Reflect about the y-axis.

(g) Stretch vertically by a factor of 2.
(h) Shrink vertically by a factor of 2.
(i) Stretch horizontally by a factor of 2.
(j) Shrink horizontally by a factor of 2.

S

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If f is a function, then f(s + 1) = f(s) + .

2. If f(s) = f(1), then s = 1.

e ———————————

3. If f is a function, then f(3x) = 3f (x).
4. If x; < x, and f is a decreasing function, then f(x1) > f(x2).
5. A vertical line intersects the graph of a function at most once.

6. If f and g are functions, then fe g =g of.
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EXERCISES

1. Let f be the function whose graph is given.
(a) Estimate the value of f(2).
(b) Estimate the values of x such that f(x) = 3.
(c) State the domain of f.
(d) State the range of f.
(e) On what interval is f increasing?
(f) Is f even, odd, or neither even nor odd? Explain.

1 [ |
S o T B s e e
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2. Determine whether each curve is the graph of a function of x.
If it is, state the domain and range of the function.

(@) (®) y

3. If f(x) = x* — 2x + 3, evaluate the difference quotient

fla+h) —fla)
h

4. Sketch a rough graph of the yield of a crop as a function of the
amount of fertilizer used.

5-8 Find the domain and range of the function.

5. f(x) =2/(3x = 1) 6. g(x) = /16 — x*
L.y=1+sinx 8. F(tf) =3 + cos2t

9. Suppose that the graph of f is given. Describe how the graphs
of the following functions can be obtained from the graph of f.

(@ y=f(x) +38 (b) y=f(x+38)
©) y=1+2f(x) @d y=fx—2 -2
© y=—f(x f) y=3 -1

10. The graph of f is given. Draw the graphs of the following
functions.

@ y=f(x — 8) ) y=—fx

©y=2-f) @ y=12f( -1
11-16 Use transformations to sketch the graph of the function.
1. y= —sin2x 12. y=(x— 2)°
13. y=1+ 3x° 14 y=2—-x

15. f(x) =

1+x? ifx=0

16, fg= 1+x ifx<O0
x4 2 - fx

17. Determine whether f is even, odd, or neither even nor odd.
(a) flx) =2x" — 3x2+ 2 ®) flx) =x— x!
() f(x) = cos(x?) (d) f(x) =1+ sinx

18. Find an expression for the function whose graph consists of
the line segment from the point (=2, 2) to the point (=1, 0)
together with the top half of the circle with center the origin
and radius 1.

19. If f(x) = v/x and g(x) = sin x, find the functions @) fog,
(b)gof, () fof,(d) geog,and their domains.

20. Express the function F(x) = 1//x +/x as a composition of
three functions.

[A4 21. Use graphs to discover what members of the family of

functions f(x) = sin"x have in common, where n is a positive
integer. How do they differ? What happens to the graphs as n
becomes large?

22. A small-appliance manufacturer finds that it costs $9000 to
produce 1000 toaster ovens a week and $12,000 to produce
1500 toaster ovens a week.

(a) Express the cost as a function of the number of toaster
ovens produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?

(c) What is the y-intercept of the graph and what does it
represent?

23. Life expectancy improved dramatically in the 20th century. The
table gives the life expectancy at birth (in years) of males born
in the United States.

1960

Birth year Life expectancy

66.6
67.1
70.0
1990 71.8

2000 73.0

Use a scatter plot to choose an appropriate type of model. Use
your model to predict the life span of a male born in the year
2010.



i
H
i
i
|
{
i
!
i
i

PRINCIE
FROBLEN

t

iderstand the

Problem

There are no hard and fast rules that will ensure success in solving problems. However, it is
possible to outline some general steps in the problem-solving process and to give some prin-
ciples that may be useful in the solution of certain problems. These steps and principles are
just common sense made explicit. They have been adapted from George Polya’s book How
To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask your-
self the following questions:

What is the unknown?
What are the given quantities?
What are the given conditions?

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, ¢, m, n, x,
and y, but in some cases it helps to use initials as suggestive symbols; for instance, V for
volume or ¢ for time.

Find a connection between the given information and the unknown that will enable you to
calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the given
to the unknown?” If you don’t see a connection immediately, the following ideas may be
helpful in devising a plan.

Try to Recognize Something Familiar Relate the given situation to previous knowledge. Look
at the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns Some problems are solved by recognizing that some kind of pat-
tern is occurring. The pattern could be geometric, or numerical, or algebraic. If you can see
regularity or repetition in a problem, you might be able to guess what the continuing pattern
is and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar problem, a related
problem, but one that is easier than the original problem. If you can solve the similar, sim-
pler problem, then it might give you the clues you need to solve the original, more difficult
problem. For instance, if a problem involves very large numbers, you could first try a simi-
lar problem with smaller numbers. Or if the problem involves three-dimensional geometry,
you could look for a similar problem in two-dimensional geometry. Or if the problem you
start with is a general one, you could first try a special case.

Introduce Something Extra It may sometimes be necessary to introduce something new, an
auxiliary aid, to help make the connection between the given and the unknown. For instance,
in a problem where a diagram is useful the auxiliary aid could be a new line drawn in a dia-
gram. In a more algebraic problem it could be a new unknown that is related to the original
unknown.




PRINCIPLES OF
PROBLEM SOLVING

Take Cases We may sometimes have to split a problem into several cases and give a dif-
ferent argument for each of the cases. For instance, we often have to use this strategy in deal-
ing with absolute value.

Work Backward Sometimes it is useful to imagine that your problem is solved and work
backward, step by step, until you arrive at the given data. Then you may be able to reverse
your steps and thereby construct a solution to the original problem. This procedure is com-
monly used in solving equations. For instance, in solving the equation 3x — 5 = 7, we sup-
pose that x is a number that satisfies 3x — 5 = 7 and work backward. We add 5 to each side
of the equation and then divide each side by 3 to get x = 4. Since each of these steps can
be reversed, we have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals (in which the
desired situation is only partially fulfilled). If we can first reach these subgoals, then we may
be able to build on them to reach our final goal.

Indirect Reasoning Sometimes it is appropriate to attack a problem indirectly. In using
proof by contradiction to prove that P implies O, we assume that P is true and Q is false and
try to see why this can’t happen. Somehow we have to use this information and arrive at a
contradiction to what we absolutely know is true.

Mathematical Induction In proving statements that involve a positive integer n, it is fre-
quently helpful to use the following principle.

PRINCIPLE OF MATHEMATICAL INDUCTION Let S, be a statement about the positive
integer n. Suppose that

1. S, is true.

2. S+ is true whenever Sy is true.

Then S, is true for all positive integers n. J

This is reasonable because, since S, is true, it follows from condition 2 (with
k = 1) that S, is true. Then, using condition 2 with k = 2, we see that Ss is true. Again using
condition 2, this time with k = 3, we have that Sy is true. This procedure can be followed
indefinitely.

In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the
plan and write the details that prove that each stage is correct.

Having completed our solution, it is wise to look back over it, partly to see if we have made
errors in the solution and partly to see if we can think of an easier way to solve the problem.
Another reason for looking back is that it will familiarize us with the method of solution and
this may be useful for solving a future problem. Descartes said, “Every problem that I solved
became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before you
look at the solutions, try to solve these problems yourself, referring to these Principles of
Problem Solving if you get stuck. You may find it useful to refer to this section from time
to time as you solve the exercises in the remaining chapters of this book.
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Draw a diagram

FIGURE 1|

& Connect the given with the unknown
& Introduce something extra
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Relate to the familiar
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EXAMPLE | Express the hypotenuse & of a right triangle with area 25 m? as a function o
its perimeter P.

SOLUTION Let’s first sort out the information by identifying the unknown quantity and the da
Unknown: hypotenuse h

Given quantities: perimeter P, area 25 m?

It helps to draw a diagram and we do so in Figure 1.

h

a

In order to connect the given quantities to the unknown, we introduce two extra vari-
ables a and b, which are the lengths of the other two sides of the triangle. This enables u
to express the given condition, which is that the triangle is right-angled, by the Pythago-
rean Theorem:

h? = a* + b?

The other connections among the variables come by writing expressions for the area and
perimeter:
25 = 3ab P=a+b+h

Since P is given, notice that we now have three equations in the three unknowns a, b,
and A:

[1] h*=a%+ b?
25 = 3ab
(3] P=a+b+h

Although we have the correct number of equations, they are not easy to solve in a straig}
forward fashion. But if we use the problem-solving strategy of trying to recognize some-
thing familiar, then we can solve these equations by an easier method. Look at the right
sides of Equations 1, 2, and 3. Do these expressions remind you of anything familiar?
Notice that they contain the ingredients of a familiar formula:

(@ + b)> = a® + 2ab + b?
Using this idea, we express (a + b)? in two ways. From Equations 1 and 2 we have
(@ + b)* = (a® + b?) + 2ab = h* + 4(25)
From Equation 3 we have

(a + b)* = (P — h)> = P — 2Ph + h?

Thus h* + 100 = P> — 2Ph + h?
2Ph = P* — 100
_ P2-100
2P

This is the required expression for 4 as a function of P.
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As the next example illustrates, it is often necessary to use the problem-solving prin-
ciple of taking cases when dealing with absolute values.

EXAMPLE 2 Solve the inequality |x — 3| + [x + 2| < 11.

SOLUTION Recall the definition of absolute value:
| | X if x=0
x 3
—x ifx<0

x=3 ifx—3=0
It follows that \x—3|={ -3 if 3<0
—(x— if x —

x—3 if x=3
-x+3 if x <3

Similag] + 2| =
imilarly |x l —(x+2) ifx+2<0

Y+2 fx+2=0

X+ 2 if x= -2
—x — 2 if x<—2

These expressions show that we must consider three cases:

x< =2 -2=<x<3 x=3

CASE | If x < —2, we have
|x =3+ |x+2[<1l
—x+3-x—-2<1l
-2x <10

x > =5

CASE Il If —2 < x < 3, the given inequality becomes
—x+3+x+2<l1l
5<11 (always true)

CASE 1l If x = 3, the inequality becomes
x—3+x+2<11
2x < 12
x<6

Combining cases I, II, and III, we see that the inequality is satisfied when —5 < x < 6.
So the solution is the interval (=5, 6). O
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In the following example we first guess the answer by looking at special cases and rec-
ognizing a pattern. Then we prove it by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

STEP | Prove that S, is true whenn = 1.
STEP 2 Assume that S, is true whenn = k and deduce that S, is true whenn =k + L.

§TEP 3 Conclude that S, is true for all n by the Principle of Mathematical Induction.

EXAMPLE 3 If fo(x) = x/(x + 1) and fo+1 = foo fuforn = 0,1,2,...,find a formula

for fu(x).
& Analogy: Try a similar, simpler problem SOLUTION We start by finding formulas for f(x) for the special cases n = 1,2, and 3.
x
filx) = (foo o) (x) = fo(fo(x)) =f0< )
x+1
x x
X +1 X +1 X
% 2x + 1 2x + 1
+ 1
x+1 + 1
x
filx) = (fo ° f1)(x) = fi( i(x)) = fo
2x + 1
x X
B 2x +1 _ 2x+1 x
X 3x + 1 3x + 1
+1
2x + 1 2% + 1
x
£i(x) = (foe o) () = fo( (%)) = fo
3x + 1
® Look for a pattern X X
_ 3x + 1 - Bxl X
x 4x + 1 4x + 1

+ 1
3x +1 3x + 1

We notice a pattern: The coefficient of x in the denominator of f,(x)isn + 1 in the
three cases we have computed. So we make the guess that, in general,

X
4 ) = (n+ Dx+1

To prove this, we use the Principle of Mathematical Induction. We have already verified
that (4) is true for n = 1. Assume that it is true for n = k, that is,

X
f) =0 Dx + 1
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x
Then  fin(x) = (foo fi)(x) = fofelx)) =f°<m>

X X
E (k+ 1x+ 1 _(k+1)x+1_ X
- X N T k+2x+1 (k+Dx+1
(k+1x+1 k+Dx+1

This expression shows that (4) is true forn = k + 1. Therefore, by mathematical induc-
tion, it is true for all positive integers n. a

TPROBLEMS |

I. One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpendi-
cular to the hypotenuse as a function of the length of the hypotenuse.

2. The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length of
the hypotenuse as a function of the perimeter.

3. Solve the equation [2x — 1| — |x + 5| =3.
4. Solve the inequality |x — 1| — |x — 3| =5.
5. Sketch the graph of the function f(x) =[x — 4|x| +3 |-
6. Sketch the graph of the function g(x) = [x* — 1] = |x2 — 4.
7. Draw the graph of the equation x + [x| =y + |yl
8. Draw the graph of the equation x* — 4x2 — x2y? + 4y*=0.
9. Sketch the region in the plane consisting of all points (x,y) such that |x| + [y| < L.
10. Sketch the region in the plane consisting of all points (x, y) such that
|x = y| + |x| = |y| =2

I1. A driver sets out on a journey. For the first half of the distance she drives at the leisurely pace
of 30 mi/h; she drives the second half at 60 mi/h. What is her average speed on this trip?

12. Is it true that fo (g + h) =fe°g + foh?
13. Prove that if n is a positive integer, then 7" — 1 is divisible by 6.
14, Provethat1 +3 + 5+ -+ + 2n— 1) =n’.

15. If fo(x) = x?and fon1(x) = fo(fulx)) forn = 0,1,2, ..., find a formula for fol2).

16. (a) If fo(x) = > and for =foofuforn=0,1,2,..., find an expression for f,(x) and use
=X
mathematical induction to prove it.

(b) Graph fy, fi, f, f2 on the same screen and describe the effects of repeated composition.

59




